Browse > Article

Comparative Analysis of Aniline Dioxygenase Genes from Aniline Degrading Bacteria, Burkholderia sp. HY1 and Delftia sp. HY99.  

Kahng, Hyung-Yeel (Department of Environmental Education, Sunchon National University)
Oh, Kye-Heon (Department of Life Science, Soonchunhyang University)
Publication Information
Microbiology and Biotechnology Letters / v.35, no.2, 2007 , pp. 104-111 More about this Journal
Abstract
In this study, aniline dioxygenase genes responsible for initial catabolism of aniline in Burkholderia sp. HY1 and Delftia sp. HY99 were cloned and the amino acid sequences were comparatively analyzed, which already have been reported as bacteria utilizing aniline as a sole source of carbon and nitrogen, B. sp. HY1 was found to have at least a plasmid, and the plasmld-cured strain, B. sp. HY1-PC obtained using mitomycin C was tested with wild type strain to investigate whether the former maintained the degradability for aniline. This proved that the aniline oxygenase gene from B. sp. HY1 was located in chromosomal DNA, not in plasmid DNA. Aniline dioxygenase small subunits from B. sp. HY1 and D. sp. HY99 were found, based on 146 amino acids, to share 79% similarity. Notably, ado2 genes from B. sp. HY1 and D. sp. HY99 which were found to be terminal dioxygenase of aniline dioxygenase small subunit showed 99% similarity in the deduced amino acid sequences with tdnA2 of Frateuria sp. ANA-18 and danA2 of D. sp. AN3, respectively. Besides, enzyme assay and amino acid sequence analysis of catechol dioxygenase supported the previous report that B. sp. HY1 might occupy ortho-cleavage pathway using catechol 1,2-dioxygenase, while D. sp. HY99 might occupy catechol 2,3-dioxygenase for meta-cleavage pathway.
Keywords
Aniline dioxygenase; Burkholderia sp. HY1; Delftia sp. HY99;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Aoki, K., K. Ohtsuka, and R. Shinke. 1984. Rapid biodegradation of aniline by Frateuria species ANA-18 and its aniline metabolism, Agric. Biol. Chem. 48: 865-872   DOI
2 Minard, R. D, S. Russel, and J. M. Bollag. 1977. Chemical transformation of 4-chloroaniline to a trizene in a bacterial culture medium, J. Agric. Food. Chem. 25: 841-844   DOI
3 Kearney, P. C., J. R. Plimmer, and F. B. Guarida. 1969. Mixed chlorobenzene formation in soil. J. Agric. Food Chem. 17: 1418-1419   DOI
4 Rheinwald, J. G, A. M. Chakrabarty, and I. C. Gunsalus. 1973. A transmissible plasmid controlling camphor oxidation in Pseudomonas Putida. Proc. Natl. Acad. Sci. 70: 885-889
5 Lederberg, J., and E. M. Lederberg. 1952. Replica plating and indirect selection of bacterial mutants. J. Bacteriol. 3: 399
6 Kahng, H.-Y., S.-I. Kim, M.-J. Woo, Y.-K. Park, and Y.-N. Lee. 1992. Isolation and characterization of aniline-degrading bacteria. K. J. Microbiol. 30: 199-206
7 Lyons, C. D., S. Katz, and R. Bartha (1984), Mechanisms and pathways of aniline elimination from aquatic environments, Appl. Environ. Microbiol. 48: 491-496   PUBMED
8 Aoki, K., Y. Nakanishi, S. Murakami, and R. Shinke. 1990. Microbial metabolism of aniline through a meta-cleavage pathway: Isolation of strains and production of catechol 2,3-dioxygenase, Agric. Biol. Chem. 54: 205-206   DOI
9 Fujii, T., T. Masahiro, and M. Yoshimichi. 1997. Plasmid-encoded genes specifying aniline oxidation from Acinetobacter sp. strain YAA. Microbiology 143: 93-99   DOI
10 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning, 2nd ed. Cold Spring Harbor, New York, USA
11 Mattes T. E., N. V. Coleman, J. C. Spain, and J. M. Gossett. 2005. Physiological and molecular genetic analyses of vinyl chloride and ethene biodegradation in Nocardioides sp. strain JS614. Arch. Microbiol. 183: 95-106   DOI
12 Fukumori, F., and C. P. Saint. 1997. Nucleotide sequence and regulational analysis genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22 (pTDN1), J. Bacteriol. 170: 399-408
13 Kahng, H.-Y., J. J. Kukor, and K.-H. Oh. 2000. Characterization of strain HY99, a novel microorganism capable of aerobic and anaerobic degradation of aniline. FEMS Microbiol. Lett. 190: 215-221   DOI
14 Kim, S.-I., J. J. Kukor, K.-H. Oh, and H.-Y. Kahng. 2006. Evaluating the genetic diversity of dioxygenases for initial catabolism of aromatic hydrocarbons in Pseudomonas rhodesiae KK1. Enzyme Microbial. Technol. 40: 71-78   DOI   ScienceOn
15 Nozaki, M. 1970. Metapyrocatechase (Pseudomonas). Methods Enzymol. 17: 522-555   DOI
16 김현주, 김성은, 김정건, 김진철, 최경자, 김흥태, 황인규, 김홍기, 조광연, 이선우. 2003. Delftia acidovorans로부터 aniline분해관련 유전자의 분리. 한국미생물생명공학회지 31:25-31
17 Liang, Q., M. Takaeo, M. Chen, W. Chang, Y. Xu, and M. Lin. 2005. Chromosome-encoded gene cluster for the metabolic pathway that converts aniline to TCA-cycle intermediates in Delftia tsuruhatensis AD9. Microbiology 151: 3435-3446   DOI   ScienceOn
18 Kahng, H.-Y., J. J. Kukor, and K.-H. Oh. 2000. Physiological and phylogenetic analysis of Burkholderia sp. HY1 capable of aniline degradation. J. Microbiol. Biotechnol. 10: 643-650
19 Urata, M., E. Uchida, H. Nojiri, T. Omori, R. Obo, N. Miyaura, and N. Ouchiyama. 2004. Genes involved in aniline degradation by Delftia acidovorans strain 7N and its distribution in the natural environment. Biosci. Biotechnol. Biochem. 68: 2457-2465   DOI   ScienceOn
20 Patel, R. N., C. T. Hou, A. Felix, and M. O. Lillard. 1976. Catechol 1,2-dioxygenase from Acinetobacter calcoaceticus: purification and properties, J. Bacteriol. 127: 536-544   PUBMED
21 Murakami, S., T. Hayashi, T. Maeda, S. Takaenaka, and K. Aoki. 2003. Cloning and functional analysis of aniline dioxygenase gene cluster, from Frateuria species ANA-18, that metabolizes aniline via an ortho-cleavage pathway of catechol. Biosci. Biotechnol. Biochem. 67: 2351-2358   DOI   ScienceOn
22 Liu, Z., H. Yang, Z. Huang, P. Zhou, and S. J. Liu. 2002. Degradation of aniline by newly isolated, extremely aniline-tolerant Delftia sp. AN3, Appl. Microbiol. Biotechnol. 58: 679-682   DOI   ScienceOn
23 Itoh, N., M. Naoki, and K. Tokyo. 1993. Oxidation of aniline to nitrobenzene by noneheme bromoperoxidase. Biochem. Mol. Biol. Intl. 29: 785-791