• Title/Summary/Keyword: catalytic reduction

Search Result 767, Processing Time 0.023 seconds

A Study on the Improvement of Diesel NOx Conversion Efficiency by Increasing the Ammonia Amount Adsorbed in a SCR Catalyst (디젤엔진 요소수 분사 SCR 시스템에서 촉매 내 암모니아 흡장량의 증가에 따른 NOx 저감효율 향상 특성에 관한 연구)

  • Kim, Yanghwa;Lim, Ockteack;Kim, Hongsuk
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.196-203
    • /
    • 2020
  • Nowadays, urea SCR technology is considered as the most effective NOx reduction technology of diesel engine. However, low NOx conversion efficiency under low temperature conditions is one of its problems to be solved. This is because injection of UWS (Urea Water Solution) is impossible under such a low temperature condition due to the problem of insufficient of urea decomposition and urea deposits. In several previous studies, it has been reported that appropriate control of the amount of ammonia adsorbed on SCR catalyst can improve the NOx conversion efficiency under low temperature conditions. In this study, we tried to find out how much the NOx conversion efficiency increases with respect to the amount of ammonia adsorbed on the catalyst, and what the temperature conditions that the ammonia slip occurs. This study shows the results of 8 times repeated WHTC test with a diesel engine, in which UWS was injected with NH3/NOx mole ratio of '1'. Through this study, it was found that 13% of the NOx conversion efficiency of WHTC increased while the θ (ammonia adsorption rate) increased from "0%" to "22%". In addition, it is found that in cases of high θ value, the significant improvement of NOx conversion efficiency at low temperatures presented during the beginning period of WHTC and at high temperature and transient conditions presented during last part of WHTC test. The NH3 slip occurring condition was 250℃ of catalyst temperature and 10% of θ, and the amount of NH3 slip increased as the temperature and θ are increased.

NH3-based SNCR of NOx : Experimental and Simulation (NH3 SNCR을 이용한 NOx 제거 : 실험 및 모사)

  • Cha, Jin Sun;Park, Sung Hoon;Jeon, Jong-Ki;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.433-438
    • /
    • 2011
  • In this study, effects of temperature, NSR, and oxygen concentration on the $NO_x$ removal efficiency of an SNCR process were investigated experimentally as well as numerically using CHEMKIN-II program. The NO removal efficiency increased with the reactor temperature under oxygen-free condition, whereas when the oxygen concentration was 4%, the NO removal efficiency showed a maximum value at $900{\sim}950^{\circ}C$. The pressure of oxygen was shown to enhance the NO removal at low temperature. Regardless of the oxygen concentration, the NO removal efficiency increased with NSR. The temperature and NSR-dependencies of the NO removal efficiency predicted by CHEMKIN-II simulations were similar to that of the experimental results.

Electrochemical Synthesis of Metal-organic Framework (전기화학적 방법을 통한 금속 유기 골격체 합성)

  • Moon, Sanghyeon;Kim, Jiyoung;Choi, Hyun-Kuk;Kim, Moon-Gab;Lee, Young-Sei;Lee, Kiyoung
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.229-236
    • /
    • 2021
  • During the last two decades, metal-organic frameworks (MOFs) have been drawn attention due to their high specific surface area, porosity, and catalytic activities that allow to use in many applications such as sensor, catalysis, energy storage, etc. To synthesize MOFs hydrothermal or solvothermal method were generally used. However, these methods require high-cost equipment and long time-spend for the synthesis with multi-step process. In contrast, electrochemical synthesis has been considered as a simple and easy process under the ambient conditions. In this review, we described the mechanism of electrochemical MOFs synthesis by the number of configured electrodes system, with the recent reports of various applications.

An Ozone-based Advanced Oxidation Process for an Integrated Air Pollution Control System (복합대기오염 저감 시스템을 위한 오존 고속산화 기반 고도산화공정)

  • Uhm, Sunghyun;Hong, Gi Hoon;Hwang, Sangyeon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.237-242
    • /
    • 2021
  • Simultaneous removal technologies of multi-pollutants such as particulate matters (PMs), NOx, SOx, VOCs and ammonia have received consistent attention due to the enhancement of pollutant abatement efficiency in addition to the stringent environmental regulation and emission standard. Pretreatment of insoluble NO by an ozone oxidation can be considered to be more effective route for saving space occupation as well as operation cost in comparison with that of traditional selective catalytic reduction (SCR) process. Moreover the primary advantage of ozone oxidation process is that the simultaneous removal with acidic gas including SOx is also available. Herein, we highlight recent studies of multi-pollutant abatement via ozone oxidation process and the promising research topics for better application in industrial sectors.

Evaluation of Concentration and Reaction Kinetics through Color Analyses (색상 분석법을 이용한 농도 및 촉매반응속도 측정)

  • Lee, Euna;Chang, Ji Woong
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.279-283
    • /
    • 2022
  • UV-vis spectroscopy is one of the powerful tools for measuring the concentrations of reactant and products during a chemical reaction. However, there is an limitation of using the technique when the reaction undergoes in high concentration and high temperature. Color analysis using camera images can provide the identical results with UV-vis analysis with regardless of the sample concentration and temperature. The catalytic reduction reaction of resazurin to resorufin was investigated using the color analysis with the color spaces such as CIE L*a*b*. Moreover, the color analysis enabled the independent analysis of two different material's concentrations without the deconvolution of overlapped wavelengths unlike the case of using UV-vis spectroscopy.

A Study on the NH3-SCR Activity of the VWSbTi According to the Calcination Temperature of WSbTi (WSbTi의 소성온도에 따른 VWSbTi 촉매의 NH3-SCR 효율 연구)

  • Eo, Eun Gyeom;Shin, Jung Hun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.64-70
    • /
    • 2022
  • In this study, an experiment was performed by adding Sb during NH3-selective catalytic reduction (NH3-SCR) while varying calcination temperatures from 400 to 700 ℃ to improve the low temperature denitrification efficiency of VWTi catalyst. As a result, VWSbTi(500) and VWSbTi(600) catalysts corresponding to Sb calcination temperatures of 500~600 ℃ showed the best denitrification performance at low temperatures below 300 ℃. BET, XRD, Raman, XPS, H2-TPR, and NH3-TPD analyses were performed In order to confirm physicochemical properties according to the calcination temperature. In the case of VWSbTi(500) and VWSbTi(600), an acid site increased with the generation of W=O species, and superb activity at low temperatures was exhibited due to the excellent redox characteristics and increase in electron density of tungsten. Furthermore, in the case of VWSbTi(700), as the crystalline V2O5 structure was formed, the denitrification efficiency decreased. Thus the optimum calcination temperature during Sb addition process was confirmed.

SCR facility design for the selective catalyst performance of mixed gas

  • Woohyeon, Hwang;Kyung-Ok, Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.121-127
    • /
    • 2023
  • In this study, the design conditions and CFD analysis results are compared and reviewed in SCR that can optimally reduce nitrogen compounds. To this end, it was analyzed and compared using CFD to see if the design criteria were satisfied for the shell and tube areas of the boiler. In the SCR system, the analysis area is the gas/air heat exchanger on the shell side, and eight tubes of the gas/air heat exchanger on the tube side. Through CFD analysis, the gas velocity distribution on the primary catalyst side of the SCR system was designed to be 2.4%, and the NH3/NOx molar ratio distribution was 3.7%, which satisfied the design criteria. In addition, the uniformity of the temperature distribution was confirmed and the required condition of 260℃ or higher was satisfied. The angle of the gas entering the catalyst met the design conditions at 2.9 degrees, and the pressure loss that occurred also satisfied the design requirements. Through this CFD analysis, it was confirmed that it was designed and operated by satisfying the design conditions required for each area.

Recent Research Trend of Zeolitic Imidazolate Framework-67 for Bifunctional Catalyst (ZIF-67을 이용한 이기능성 촉매의 최신연구 동향)

  • Kim, Sang Jun;Jo, Seung Geun;Park, Gil-Ryeong;Lee, Eun Been;Lee, Jae Min;Lee, Jung Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.98-106
    • /
    • 2022
  • Metal-organic frameworks (MOFs) are widely used in various fields because they make it easy to control porous structures according to combinations of metal ions and organic linkers. In addition, ZIF (zeolitic imidazolate framework), a type of MOF, is made up of transition metal ions such as Co2+ or Zn2+ and linkers such as imidazole or imidazole derivatives. ZIF-67, composed of Co2+ and 2-methyl imidazole, exhibits both chemical stability and catalytic activity. Recently, due to increasing need for energy technology and carbon-neutral policies, catalysis applications have attracted tremendous research attention. Moreover, demand is increasing for material development in the electrocatalytic water splitting and metal-air battery fields; there is also a need for bifunctional catalysts capable of both oxidation/reduction reactions. This review summarizes recent progress of bifunctional catalysts for electrocatalytic water splitting and metal-air batteries using ZIF-67. In particular, the field is classified into areas of thermal decomposition, introduction of heterogeneous elements, and complex formation with carbon-based materials or polyacrylonitrile. This review also focuses on synthetic methods and performance evaluation.

Preparation and Characterization of Fe-Ni-Pt Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis (음이온 교환막 수전해용 Fe-Ni-Pt 나노촉매 제조 및 특성)

  • JAEYOUNG LEE;HONGKI LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.421-430
    • /
    • 2023
  • Fe-Ni-Pt nanocatalysts were loaded on carbon black powders which were synthesized by a spontaneous reduction reaction of iron (II) acetylacetonate, nickel (II) acetylacetonate and platinum (II) acetylacetonate. The morphology and the loading weight of Fe-Ni-Pt nanoparticles were characterized by transmission electron microscopy and thermogravimetric analyzer. The amount of Fe-Ni-Pt catalyst supported on the carbon black surface was about 6.42-9.28 wt%, and the higher the Fe content and the lower the Pt content, the higher the total amount of the metal catalyst supported. The Brunauer-Emmett-Teller Analysis (BET) specific surface area of carbon black itself without metal nanoparticles supported was 233.9 m2/g, and when metal nanoparticles were introduced, the specific surface area value was greatly reduced. This is because the metal nanocatalyst particles block the pore entrance of the carbon black, and thereby the catalytic activity of the metal catalysts generated inside the pores is reduced. From the I-V curves, as the content of the Pt nanocatalyst increased, the electrolytic properties of water increased, and the activity of the metal nanocatalyst was in the order of Pt > Ni > Fe.

Optimum Synthesis Conditions of Coating Slurry for Metallic Structured De-NOx Catalyst by Coating Process on Ship Exhaust Gas (선박 배연탈질용 금속 구조체 기반 촉매 제조를 위한 코팅슬러리 최적화)

  • Jeong, Haeyoung;Kim, Taeyong;Im, Eunmi;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.127-134
    • /
    • 2018
  • To reduce the environmental pollution by $NO_x$ from ship engine, International maritime organization (IMO) announced Tier III regulation, which is the emmision regulation of ship's exhaust gas in Emission control area (ECA). Selective catalytic reduction (SCR) process is the most commercial $De-NO_x$ system in order to meet the requirement of Tier III regulation. In generally, commercial ceramic honeycomb SCR catalyst has been installed in SCR reactor inside marine vessel engine. However, the ceramic honeycomb SCR catalyst has some serious issues such as low strength and easy destroution at high velocity of exhaust gas from the marine engine. For these reasons, we design to metallic structured catalyst in order to compensate the defects of the ceramic honeycomb catalyst for applying marine SCR system. Especially, metallic structured catalyst has many advantages such as robustness, compactness, lightness, and high thermal conductivity etc. In this study, in order to support catalyst on metal substrate, coating slurry is prepared by changing binder. we successfully fabricate the metallic structured catalyst with strong adhesion by coating, drying, and calcination process. And we carry out the SCR performance and durability such as sonication and dropping test for the prepared samples. The MFC01 shows above 95% of $NO_x$ conversion and much more robust and more stable compared to the commercial honeycomb catalyst. Based on the evaluation of characterization and performance test, we confirm that the proposed metallic structured catalyst in this study has high efficient and durability. Therefore, we suggest that the metallic structured catalyst may be a good alternative as a new type of SCR catalyst for marine SCR system.