• Title/Summary/Keyword: catalytic reduction

Search Result 767, Processing Time 0.023 seconds

Nitrate reduction by iron supported bimetallic catalyst in low and high nitrogen regimes

  • Hamid, Shanawar;Lee, Woojin
    • Advances in environmental research
    • /
    • v.4 no.4
    • /
    • pp.263-271
    • /
    • 2015
  • In this study, the effect of initial nitrate loading on nitrate removal and byproduct selectivity was evaluated in a continuous system. Nitrate removal decreased from 100% to 25% with the increase in nitrate loading from 10 to $300mg/L\;NO_3-N$. Ammonium selectivity decreased and nitrite selectivity increased, while nitrogen selectivity showed a peak shape in the same range of nitrate loading. The nitrate removal was enhanced at low catalyst to nitrate ratios and 100% nitrate removal was achieved at catalyst to nitrate ratio of ${\geq}33mg\;catalyst/mg\;NO_3-N$. Maximum nitrogen selectivity (47%) was observed at $66mg\;catalyst/mg\;NO_3-N$, showing that continuous Cu-Pd-NZVI system has a maximum removal capacity of 37 mg $NO_3{^-}-N/g_{catalyst}/h$. The results from this study emphasize that nitrate reduction in a bimetallic catalytic system could be sensitive to changes in optimized regimes.

Ammonia Flow Control for NOx Reduction in SCR(Selective Catalytic Reduction) System of Refuse Incineration Plant (소각로의 Nox제어용 SCR시스템의 암모니아 공급량 제어)

  • 김인규;여태경;김상봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.30-34
    • /
    • 1997
  • This paper Describe a modelling method for SCR(selective Catalytic reduction) system in refuse incineration plant. We consider the SCR system as a single input single output system. For modelling the SCR system, an auto regressive exogeneous(ARX) modelling method is used. In this case, we should design the white noise input for modelling and put it on the system as an input (.NH/sap2/.), and taken an outlet NOx as an output. From these two relations, we design the ARX model with 45 second delay time and transform to discrete system with 0.5 sampling time. Using the obtained SCR model, we simulate the SCR system to reduce the outlet NOx content by a conventional PID control method.

  • PDF

Electrocatalytic Reduction of Dioxygen at Schiff base Co(II) Complexes supported Glassy Carbon Electrode in various pH Solution

  • Park, Kyoung-Hee;Rim, Chae-Pyeong;Chjo, Ki-Hyung;Jeon, Seungwon;Choi, Yong-Kook
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.617-622
    • /
    • 1995
  • Electrocatalytic reduction of dioxygen has been investigated by cyclic voltammetry at glassy carbon electrode modified with new Co(II)-Schiff base complexes in aqueous solutions of various pH. The reduction potentials of dioxygen at chemically adsorbed electrodes show the dependence of pH between pH 4 and 14. The catalytic effect is large and the reaction occurs via two or four electron transfer in various pH solution.

  • PDF

One-pot Synthesis of Nickel and Tungsten Carbide Nanoparticles Supported Mesoporous Carbon Electrocatalyst for Oxygen Reduction Reaction (산소환원반응을 위한 니켈-텅스텐 카바이드 나노입자 담지 메조포러스 카본 촉매의 단일 합성 및 그 특성 평가)

  • Kim, Hyemin
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.3
    • /
    • pp.179-184
    • /
    • 2018
  • In this study, Ni and tungsten carbide (WC) nanoparticles are simultaneously synthesized with the mesoporous carbon nanoparticles (CNP) using a solution plasma processing (SPP) in the benzene. The Ni and WC nanoparticles were formed through the sputtering effect of electrodes during discharge, and mean time CNP were formed through reduction reaction. TEM observation showed that loaded Ni and WC nanoparticles were evenly dispersed on the CNP. The results of electrochemical analysis demonstrated that an introduction of Ni nanoparticles promoted to improve catalytic activity for oxygen reduction reaction (ORR). Moreover, Ni-WC/CNP lead to fast electron transfer process compared to that of WC/CNP. Therefore, the inexpensive Ni-WC/CNP might be a promising as catalytic material for cathodes in fuel cell applications.

A Mild and Convenient Method for the Reduction of Carbonyl Compounds with NaBH4 in the Presence of Catalytic Amounts of MoCl5

  • Zeynizadeh, Behzad;Yahyaei, Saiedeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1664-1670
    • /
    • 2003
  • $NaBH_4$ with catalytic amounts of $MoCl_5$ can readily reduce a variety of carbonyl compounds such as aldehydes, ketones, acyloins, ${\alpha}$-diketones and conjugated enones to their corresponding alcohols in good to excellent yields. Reduction reactions were performed under aprotic condition in $CH_3CN$ at room temperature or reflux. In addition, the chemoselective reduction of aldehydes over ketones was accomplished successfully with this reducing system.

Electrocatalytic Reduction of Thionyl Chloride by Schiff Base Metal(II) Complexes (1)

  • Sin, Mi Suk;Kim, U Seong;Jo, Gi Hyeong;Choe, Yong Guk
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.205-210
    • /
    • 1995
  • Catalytic effects of various Schiff base metal(II) complexes on the reduction of thionyl chloride at glassy carbon electrode are evaluated by determining the kinetic parameters from cyclic voltammetry technique. The charge transfer process is affected strongly by the concentration of catalysts during the reduction of thionyl chloride. The catalytic effects are shown by both a shift of the reduction potential for thionyl chloride toward more positive direction and an increase in peak current. The diffusion coefficient value, Do, of the 8.17 ${\times}$ 10-9 $cm^2/s$ was observed at the bare glassy carbon electrode, whereas larger values (0.9-1.09 ${\times}$ 10-8 $cm^2/s$) were observed at the catalyst supported glassy carbon electrode. Significant improvements in the cell performance have been noted in terms of both exchange rate constants and current densities at glassy carbon electrode.

CuO/3Al$_2$O$_3$ㆍ2SiO$_2$, 촉매담지 세라믹 캔들필터를 이용한 먼지/NOx/SOx/HCl 제거기술

  • 문수호;홍민선;이재춘;이동섭
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.133-143
    • /
    • 2004
  • Simultaneous removal technology of particulate/NOx/SOx/HCl using CuO/3Al$_2$O$_3$ㆍ2SiO$_2$catalyst impregnated ceramic candle filters is an advanced air pollution process and provides significantly to reduce hazardous gases emitted from coal-fired power plant. This process uses a high-temperature catalytic filter for integrating SOx and HCl reduction through injection an alkali sorbent (such as hydrated lime or sodium bicarbonate), NOx removal through ammonia injection and selective catalytic reduction (SCR), and particulate collection on the catalytic filter surface. The advantages of the process include : compact integration of the emission control technologies into a single component; easy handling of dry sorbent and by-product; and improved SCR catalytic life due to lowered SOx, HCl and particulate levels. CuO/3Al$_2$O$_3$ㆍ2SiO$_2$ catalyst impregnated ceramic candle filters showed a possibility of simultaneous treatment from results which have ascertained high removal efficiency at various combined gases conditions, and in pilot plant test for 3 months, NO conversion was showed 90% over.

K and Cs Doped Ag/Al2O3 Catalyst for Selective Catalytic Reduction of NOx by Methane

  • Rao, Komateedi N.;Yu, Chang-Yong;Lack, Choi-Hee;Ha, Heon-Phil
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.510-516
    • /
    • 2011
  • In the present study, potassium and caesium doped Ag/$Al_2O_3$ catalysts were synthesized by simple wet impregnation method and evaluated for selective catalytic reduction (SCR) of NOx using methane. TEM analysis and diffraction patterns demonstrated the finely dispersed Ag particles. BET surface measurements reveal that the prepared materials have moderate to high surface area and the metal amount found from ICP analysis was well matching with the theoretical loadings. The synthesized K-Ag/$Al_2O_3$ and Cs-Ag/$Al_2O_3$ catalysts exhibited a promotional effect on deNOx activity in the presence of $SO_2$ and $H_2O$. The long-term isothermal studies at $550^{\circ}C$ under oxygen rich condition showed the superior catalytic properties of the both alkali promoted samples. The crucial catalytic properties of materials are attributed to NO adsorption properties detected by the NO TPD.

Catalytic Activity of BiVO4-graphene Nanocomposites for the Reduction of Nitrophenols and the Photocatalytic Degradation of Organic Dyes

  • Li, Jiulong;Ko, Jeong Won;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.51 no.3
    • /
    • pp.240-249
    • /
    • 2016
  • $BiVO_4$ nanomaterial was synthesized from bismuth (III) nitrate pentahydrate [$Bi(NO_3)_3{\cdot}5H_2O$] and ammonium vanadate (V) [$NH_4VO_3$]. The $BiVO_4$-graphene nanocomposite was fabricated by calcining the $BiVO_4$ nanomaterial and graphene under an oxygen-free atmosphere at $700^{\circ}C$. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to characterize structural and morphological properties of samples. The catalytic activity of the $BiVO_4$-graphene nanocomposite was studied for the reduction of 4-nitrophenol, 3-nitrophenol and 2-nitrophenol by sodium borohydride [$NaBH_4$]. The photocatalytic activity of the $BiVO_4$-graphene nanocomposite was demonstrated by the degradation of organic dyes like BG, MB, MO and RhB under irradiation at 365 nm. The catalytic and photocatalytic activity were studied by UV-vis spectrophotometry.

Excitation Light Source Dependence of Photo-catalytic Efficiency for Benzene Removal (벤젠제거에 대한 광촉매 효율의 여기광원 의존성)

  • Choi, Yong-Seok;Kim, Seong-Jin;Han, Young-Heon;Yu, Soon-Jae;Lee, Eun-Ah;Kim, Hak-Soo;Kim, Song-Gang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.510-514
    • /
    • 2005
  • We have investigated the excitation-light source dependence of photo-catalytic efficiency for the benzene removal. The photo-catalytic module for the benzene removal is fabricated by a combination of GaN-based ultraviolet light-emitting diode (UV GaN-LED) and $TiO_2$ thin film coated on an aluminum plate. The benzene reduction rates of 365 nm and 375 nm modules at 60 mA junction current are approximately $8.95\;\%/Hr$ and $9.2\;\%/Hr$, respectively, which indicates that 365 nm GaN-LED is more effective than 375 nm GaN-LED. The benzene reduction efficiency is also noticeably dependent on the excitation wavelength and excitation-light power, as well as it is increased with the shorter wavelength and higher excitation power. This result exhibits that UV GaN-LED is useful to remove the volatile organic compounds (VOCs) existing in the environment.