Browse > Article
http://dx.doi.org/10.7473/EC.2016.51.3.240

Catalytic Activity of BiVO4-graphene Nanocomposites for the Reduction of Nitrophenols and the Photocatalytic Degradation of Organic Dyes  

Li, Jiulong (Department of Convergence Science, Graduate School, Sahmyook University)
Ko, Jeong Won (Department of Convergence Science, Graduate School, Sahmyook University)
Ko, Weon Bae (Department of Convergence Science, Graduate School, Sahmyook University)
Publication Information
Elastomers and Composites / v.51, no.3, 2016 , pp. 240-249 More about this Journal
Abstract
$BiVO_4$ nanomaterial was synthesized from bismuth (III) nitrate pentahydrate [$Bi(NO_3)_3{\cdot}5H_2O$] and ammonium vanadate (V) [$NH_4VO_3$]. The $BiVO_4$-graphene nanocomposite was fabricated by calcining the $BiVO_4$ nanomaterial and graphene under an oxygen-free atmosphere at $700^{\circ}C$. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to characterize structural and morphological properties of samples. The catalytic activity of the $BiVO_4$-graphene nanocomposite was studied for the reduction of 4-nitrophenol, 3-nitrophenol and 2-nitrophenol by sodium borohydride [$NaBH_4$]. The photocatalytic activity of the $BiVO_4$-graphene nanocomposite was demonstrated by the degradation of organic dyes like BG, MB, MO and RhB under irradiation at 365 nm. The catalytic and photocatalytic activity were studied by UV-vis spectrophotometry.
Keywords
$BiVO_4$-graphene Nanocomposites; catalytic activities; photocatalytic activities; UV-vis spectrophotometer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. R. Zhao, Y. Wang, Y. Yang, J. Tang, and Y. N. Yang, "Carbon Spheres Supported Visible-Light-Driven CuO-$BiVO_4$ Heterojunction: Preparation, Characterization, and Photocatalytic Propertie", Appl. Catal. B: Environ., 115, 90 (2012).
2 W. Zhang, X. Xiao, L. Zheng, and C. Wan, "Fabrication of $TiO_{2}/MoS_{2}@zeolite$ Photocatalyst and its Photocatalytic Activity for Degradation of Methyl Orange under Visible Light", Appl. Surf. Sci., 358, 468 (2015).   DOI
3 L. Zhang, M. S. Tse, and O. K. Tan, "Controlled Deposition and Enhanced Visible Light Photocatalytic Performance of Pt-Modified $TiO_2$ Nanotube Arrays", J. Environ. Chem. Eng., 2, 1214 (2014).   DOI
4 G. Xiao, X. Zhang, W. Y. Zhang, S. Zhang, H. J. Su, and T. W. Tan, "Visible-Light-Mediated Synergistic Photocatalytic Antimicrobial Effects and Mechanism of Ag-Nanoparticles@chitosan-$TiO_2$ Organic-Inorganic Composites for Water Disinfection", Appl. Catal. B: Environ., 170, 255 (2015).
5 T. Arai, M. Yanagida, Y. Konishi, A. Ikura, Y. Iwasaki, H. Sugihara, and K. Sayama, "The Enhancement of $WO_3$-Catalyzed Photodegradation of Organic Substances Utilizing the Redox Cycle of Copper Ions", Appl. Catal. B, 84, 42 (2008).   DOI
6 A. Duret and M. Gratzel, "Visible Light-Induced Water Oxidation on Mesoscopic ${\alpha}-Fe_2O_3$ Films Made by Ultrasonic Spray Pyrolysis", J. Phys. Chem. B, 109, 17184 (2005).   DOI
7 T. Saison, N. Chemin, C. Chaneac, O. Durupthy, V. Ruaux, L. Mariey, F. Mauge, P. Beaunier, and J. P. Jolive, "$Bi_2O_3,\;BiVO_4,\;and\;Bi_2WO_6$: Impact of Surface Properties on Photocatalytic Activity under Visible Light", J. Phys. Chem. C, 115, 5657 (2011).   DOI
8 Q. Yu, Z. R. Tang, and Y. J. Xu., "Synthesis of $BiVO_4$ NanoSheets-Graphene Composites Toward Improved Visible Light Photoactivity", J. Energy Chem., 23, 564 (2014).   DOI
9 M. Niu, R. Zhu, F. Tian, K. Song, G. Cao, and F. Ouyang, "The Effects of Precursors and Loading of Carbon on the Photocatalytic Activity of C-$BiVO_4$ for the Degradation of High Concentrations of Phenol under Visible Light Irradiation", Catal. Tod., 258, 585 (2015).   DOI
10 J. Xu, W. Wang, J. Wang, and Y. Liang, "Controlled Fabrication and Enhanced Photocatalystic Performance of $BiVO_4@CeO_2$ Hollow Microspheres for the Visible-Light-Driven Degradation of Rhodamine B", Appl. Surf. Sci., 349, 529 (2015).   DOI
11 H. M. Fan, T. F. Jiang, H. Y. Li, D. J. Wang, L. L. Wang, J. L. Zhai, D. Q. He, P. Wang, and T. F. Xie, "Effect of $BiVO_4$ Crystalline Phases on the Photoinduced Carriers Behavior and Photocatalytic Activity", J. Phys. Chem. C, 116, 2425 (2012).   DOI
12 N. Wetchakum, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A. I. Minett, and J. Chen, "$BiVO_4/CeO_2$ Nanocomposites with High Visible-Light-Induced Photocatalytic Activity", ACS Appl. Mater. Interfaces, 4, 3718 (2012).   DOI
13 S. Kohtani, M. Tomohiro, K. Tokumura, and R. Nakagaki, "Photooxidation Reactions of Polycyclic Aromatic Hydrocarbons over Pure and Ag-Loaded $BiVO_4$ Photocatalysts", Appl. Catal. B: Environ., 58, 265 (2005).   DOI
14 M. Wang, C. Niu, J. Liu, Q. Wang, C. Yang, and H. Zheng, "Characterization and Photocatalytic Properties of N-Doped $BiVO_4$ Synthesized via a Sol-Gel Method", J. Alloys Comp., 548, 70 (2013).   DOI
15 S. W. Cao, Z. Yin, J. Barber, F. Y. C. Boey, S. C. J. Loo, and C. Xue, "Preparation of Au-$BiVO_4$ Heterogeneous Nanostructures as Highly Efficient Visible-Light Photocatalysts", ACS Appl. Mater. Interfaces, 4, 418 (2012).   DOI
16 M. C. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, and Y. H. Wu, "Efficient Photocatalytic Degradation of Phenol over $Co_3O_4/BiVO_4$ Composite under Visible Light Irradiation", J. Phys. Chem. B, 110, 20211 (2006).   DOI
17 N. Zhang, Y. Zhang, X. Pan, M. Q. Yang, and Y. J. Xu, "Constructing Ternary CdS-Graphene-$TiO_2$ Hybrids on the Flatland of Graphene Oxide with Enhanced Visible-Light Photoactivity for Selective Transformation", J. Phys. Chem. C, 116, 180233 (2012).
18 L. Z. Li and B. Yan, "$BiVO_4/Bi_2O_3$ Submicrometer Sphere Composite: Microstructure and Photocatalytic Activity under Visible-Light Irradiation", J. Alloys Compd., 476, 624 (2009).   DOI
19 D. K. Lee, I. S. Cho, S. Lee, S. T. Bae, J. H. Noh, D. W. Kim, and K. S. Hong, "Effects of Carbon Content on the Photocatalytic Activity of C/$BiVO_4$ Composites under Visible Light Irradiation", Mater. Chem. Phys., 119, 106 (2010).   DOI
20 X. Men, H. Chen, K. Chang, X. Fang, C. Wu, W. Qin, and S. Yin, "Three-Dimensional Free-Standing ZnO/Graphene Composite Foam for Photocurrent Generation and Photocatalytic Activity", Appl. Catal. B: Environ., 187, 367 (2016).   DOI
21 S. Pan and X. Liu, "ZnS-Graphene Nanocomposite: Synthesis, Characterization and Optical Properties", J. Sol. Sta. Chem., 191, 51 (2012).   DOI
22 Y. L. Min, K. Zhang, Y. C. Chen, and Y. G. Zhang, "Enhanced Photocatalytic Performance of $Bi_2WO_6$ by Graphene Supporter as Charge Transfer Channel", Separ. Purif. Technol., 86, 98 (2012).   DOI
23 T. Xu, L. Zhang, H. Cheng, and Y. Zhu, "Significantly Enhanced Photocatalytic Performance of ZnO via Graphene Hybridization and the Mechanism Study", Appl. Catal. B: Environ., 101, 382 (2011).   DOI
24 S. Y. Yin, X. J. Men, H. Sun, P. She, W. Zhang, C. F. Wu, W. P. Qin, and X. D. Chen, "Enhanced Photocurrent Generation of Bio-Inspired Graphene/ZnO Composite Films", J. Mater. Chem. A, 3, 12016 (2015).   DOI
25 M. Sangareswari and M. M. Sundaram, "A Comparative Study on Photocatalytic Efficiency of $TiO_2$ and $BiVO_4$ Nanomaterial for Degradation of Methylene Blue Dye under Sunlight Irradiation", J. Avd. Chem. Sci., 1, 75 (2015).
26 J. Feng, L. Su, Y. Ma, C. Ren, Q. Guo, and X. Chen, "$CuFe_2O_4$ Magnetic Nanoparticles: A Simple and Efficient Catalyst for the Reduction of Nitrophenol", Chem. Eng. J., 221, 16 (2013).   DOI
27 S. Sarkar and K. K. Chattopadhyay, "Visible Light Photocatalysis and Electron Emission from Porous Hollow Spherical $BiVO_4$ Nanostructures Synthesized by a Novel Route", Physica. E, 58, 52 (2014).   DOI
28 A. Goyal, S. Bansal, and S. Singhal, "Facile Reduction of Nitrophenols: Comparative Catalytic Efficiency of $MFe_2O_4$ (M = Ni, Cu, Zn) Nano Ferrites", Int. J. Hydrogen Energ., 39, 4895 (2014).   DOI
29 H. Liu, T. Lv, X. H. Wu, C. K. Zhu, and Z. F. Zhu, "Preparation and Enhanced Photocatalytic Activity of CdS@RGO Core-Shell Structural Microspheres", Appl. Sulf. Sci., 305, 242 (2014).   DOI
30 S. Wunder, F. Polzer, Y. Lu, Y. Mei, and M. Ballauff, "Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes", J. Phys. Chem. C, 114, 8814 (2010).   DOI
31 H. Liu, T. Lv, C. Zhu, X. Su, and Z. Zhu, "Efficient Synthesis of $MoS_2$ Nanoparticles Modified $TiO_2$ Nanobelts with Enhanced Visible-Light-Driven Photocatalytic Activity", J. Mol. Catal. A: Chem., 396, 136 (2015).   DOI
32 Y. Geng, P. Zhang, N. Li, and Z. Sun, "Synthesis of Co Doped $BiVO_4$ with Enhanced Visible-Light Photocatalytic Activities", J. Alloys Compd., 651, 744 (2015).   DOI
33 K. Dai, G. Dawson, S. Yang, Z. Chen, and L. Lu, "Large Scale Preparing Carbon Nanotube/Zinc Oxide Hybrid and its Application for Highly Reusable Photocatalyst", Chem. Eng. J., 191, 571 (2012).   DOI
34 C. V. Rode, M. J. Vaidya, and R. V. Chaudhari, "Synthesis of p-Aminophenol by Catalytic Hydrogenation of Nitrobenzene", Org. Process Res. Dev., 3, 465 (1999).   DOI
35 S. Ameen, M. S. Akhtar, M. Nazim, and H. S. Shin, "Rapid Photocatalytic Degradation of Crystal Violet Dye over ZnO Flower Nanomaterials", Mater. Lett., 96, 228 (2013).   DOI
36 A. Niaz, J. Fischer, J. Barek, B. Yosypchuk, Sirajuddin, and M.I. Bhanger, "Voltammetric Determination of 4-Nitrophenol Using a Novel Type of Silver Amalgam Paste Electrode", Electroanal., 21, 1786 (2009).   DOI
37 S. Saha, A. Pal, S. Kundu, S. Basu, and T. Pal, "Photochemical Green Synthesis of Calcium-Alginate-Stabilized Ag and Au Nanoparticles and Their Catalytic Application to 4-Nitrophenol Reduction", Langmuir 26, 2885 (2010).   DOI
38 V. K. Gupta, M. L. Yola, T. Eren, F. Kartal, M. O. Caglayan, and N. Atar, "Catalytic Activity of Fe@Ag Nanoparticle Involved Calcium Alginate Beads for the Reduction of Nitrophenols", J. Mol. Liq., 190, 133 (2014).   DOI
39 M. Haruta and M. Date, "Advances in the Catalysis of Au Nanoparticles", Appl. Catal. A: Gen., 222, 427 (2001).   DOI
40 K. S. Shin, Y. K. Cho, J. Y. Choi, and K. Kim, "Facile Synthesis of Silver-deposited Silanized Magnetite Nanoparticles and Their Application for Catalytic Reduction of Nitrophenols", Appl. Catal. A: Gen., 413, 170 (2012).
41 X. M. Gao, F. Fu, and W. H. Li, "Photocatalytic Degradation of Phenol over Cu Loading $BiVO_4$ Metal Composite Oxides under Visible Light Irradiation", Phys. B., 412, 26 (2013).   DOI
42 S. K. Ghosh, M. Mandal, S. Kundu, S. Nath, and T. Pal, "Bimetallic Pt-Ni Nanoparticles Can Catalyze Reduction of Aromatic Nitro Compounds by Sodium Borohydride in Aqueous Solution", Appl. Catal. A: Gen., 268, 61 (2004).   DOI