DOI QR코드

DOI QR Code

A Mild and Convenient Method for the Reduction of Carbonyl Compounds with NaBH4 in the Presence of Catalytic Amounts of MoCl5

  • Published : 2003.11.20

Abstract

$NaBH_4$ with catalytic amounts of $MoCl_5$ can readily reduce a variety of carbonyl compounds such as aldehydes, ketones, acyloins, ${\alpha}$-diketones and conjugated enones to their corresponding alcohols in good to excellent yields. Reduction reactions were performed under aprotic condition in $CH_3CN$ at room temperature or reflux. In addition, the chemoselective reduction of aldehydes over ketones was accomplished successfully with this reducing system.

Keywords

References

  1. Seyden-Penne, J. Reductions by the Alumino and Borohydridesin Organic Synthesis, 2nd Ed.; Wiley-VCH: 1997.
  2. Hudlicky,M. Reductions in Organic Chemistry; Ellis Horwood Ltd.:Chichester, 1984.
  3. Hajos, A. Complex Hydrides and RelatedReducing Agents in Organic Chemistry; Elsevier: Amsterdam,1979.
  4. Zeynizadeh, B. Bull. Chem. Soc. Jpn. 2003, 76, 317. https://doi.org/10.1246/bcsj.76.317
  5. Zeynizadeh, B.; Faraji, F. Bull. Korean Chem. Soc. 2003, 24, 453. https://doi.org/10.5012/bkcs.2003.24.4.453
  6. Firouzabadi, H.; Zeynizadeh, B. Bull. Chem. Soc. Jpn. 1997, 70,155. https://doi.org/10.1246/bcsj.70.155
  7. Firouzabadi, H.; Zeynizadeh, B. Iranian J. Sci. & Tech., Trans. A1995, 19, 103.
  8. Brown, H. C.; Subba Rao, B. C. J. Am. Chem. Soc. 1956, 78,2582. https://doi.org/10.1021/ja01592a070
  9. Ganem, B.; Osby, J. O. Chem. Rev. 1986, 86, 763. https://doi.org/10.1021/cr00075a003
  10. Zeynizadeh, B.; Shirini, F. J. Chem. Res. 2003, 335.
  11. Zeynizadeh, B.; Shirini, F. Bull. Korean Chem. Soc. 2003, 24, 295and the references cited therein. https://doi.org/10.5012/bkcs.2003.24.3.295
  12. Firouzabadi, H.; Adibi, M.; Ghadami, M. Phosphorus, Sulfur,Silicon Relat. Elem. 1998, 142, 191. https://doi.org/10.1080/10426509808029675
  13. Firouzabadi, H.; Adibi, M. Synth. Commun. 1996, 26, 2429. https://doi.org/10.1080/00397919608004555
  14. Firouzabadi, H.; Adibi, M. Phosphorus, Sulfur, Silicon Relat. Elem. 1998, 142, 125. https://doi.org/10.1080/10426509808029672
  15. Firouzabadi, H.; Afsharifar, G. R. Synth. Commun. 1992, 22, 497. https://doi.org/10.1080/00397919208019248
  16. Firouzabadi, H.; Afsharifar, G. R. Bull. Chem. Soc. Jpn.1995, 68, 2595. https://doi.org/10.1246/bcsj.68.2595
  17. Kreiser, W. Ann. Chem. 1971, 745, 164. https://doi.org/10.1002/jlac.19717450120
  18. Pechmann, V. H.;Dahl, F. Chem. Ber. 1890, 23, 2421. https://doi.org/10.1002/cber.189002302119
  19. Ho, T.-L.; Olah, G.A.Synthesis 1976, 815.
  20. Mori, T.; Nakahara, T.; Nozaki, H. Can.J. Chem. 1969, 47, 3266. https://doi.org/10.1139/v69-540
  21. Mayer, R.; Hiller, G.; Nitzschke, M.;Jentzsch, J. Angew. Chem. 1963, 75, 1011. https://doi.org/10.1002/ange.19630752103
  22. Rubin, M. B.; Ben-Bassat, J. M. Tetrahedron Lett. 1971, 3403.
  23. Imuta, M.; Ziffer, H. J. Org. Chem. 1978, 43, 3530. https://doi.org/10.1021/jo00412a024
  24. Blomquist, A. T.; Goldstein, A. Org. Synth. Coll. Vol. IV 1963,216.
  25. Guette, J. P.; Spassky, N.; Boucherot, D. Bull. Chem. Soc.Fr. 1972, 4217.
  26. Johnson, M. R.; Rickborn, B. J. Org. Chem. 1970, 35, 1041. https://doi.org/10.1021/jo00829a039
  27. Varma, R. S.; Kabalka, G. W. Synth. Commun. 1985, 15, 985. https://doi.org/10.1080/00397918508076830
  28. Nutaitis, C. F.; Bernardo, J. E. J. Org. Chem. 1989, 54, 5629. https://doi.org/10.1021/jo00284a046
  29. Cha, J. S.; Kwon, O. O.; Kwon, S. Y. Org. Prep. Proced. Int.1996, 28, 355. https://doi.org/10.1080/00304949609356544
  30. Cha, J. S.; Kwon, O. O.; Kwon, S. Y. Bull.Korean Chem. Soc. 1995, 16, 1009.
  31. Cha, J. S.; Kim, E. J.;Kwon, O. O. Bull. Korean Chem. Soc. 1994, 15, 1033.
  32. Kim, S.; Moon, Y. C.; Ahn, K. H. J. Org. Chem. 1982, 47, 3311. https://doi.org/10.1021/jo00138a021
  33. Ravikumar, K. S.; Baskaran, S.; Chandrasekaran, S. J. Org. Chem.1993, 58, 5981. https://doi.org/10.1021/jo00074a026

Cited by

  1. /Charcoal: A New Synthetic Method for Mild and Convenient Reduction of Nitroarenes vol.36, pp.18, 2006, https://doi.org/10.1080/00397910600764709
  2. O System vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3323
  3. System vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3448
  4. under Microwave Irradiation vol.52, pp.6, 2013, https://doi.org/10.1002/jccs.200500169
  5. /DOWEX(R)50WX4: A Convenient Reducing System for Fast and Efficient Reduction of Carbonyl Compounds to Their Corresponding Alcohols vol.60, pp.6, 2013, https://doi.org/10.1002/jccs.201300014
  6. Process modeling of reduction and acetylation reactions by spectrophotometric and chemometrics methods vol.11, pp.1, 2014, https://doi.org/10.1007/s13738-013-0284-7
  7. A Mild and Convenient Method for the Reduction of Carbonyl Compounds with NaBH4 in the Presence of Catalytic Amounts of MoCl5. vol.35, pp.17, 2004, https://doi.org/10.1002/chin.200417050
  8. vol.78, pp.2, 2005, https://doi.org/10.1246/bcsj.78.307
  9. vol.2009, pp.21, 2009, https://doi.org/10.1002/ejoc.200900352
  10. Novelties of kinetics of chemoselective reduction of citronellal to citronellol by sodium borohydride under liquid–liquid phase transfer catalysis vol.247, pp.1, 2003, https://doi.org/10.1016/j.molcata.2005.11.015
  11. Novel Chemoselective Reduction of Aldehydes in the Presence of Other Carbonyl Moieties with Thiourea Dioxide vol.38, pp.13, 2003, https://doi.org/10.1080/00397910802026220
  12. Wet SiO2 As a Suitable Media for Fast and Efficient Reduction of Carbonyl Compounds with NaBH3CN under Solvent-Free and Acid-Free Conditions vol.31, pp.10, 2003, https://doi.org/10.5012/bkcs.2010.31.10.2961
  13. Solvent-free reduction of carboxylic acids to alcohols with NaBH4promoted by 2,4,6-trichloro-1,3,5-triazine and PPh3in the presence of K2CO3 vol.4, pp.87, 2003, https://doi.org/10.1039/c4ra08643k
  14. Manganese(III) porphyrin anchored onto multiwall carbon nanotubes: An efficient and reusable catalyst for the heterogeneous reduction of aldehydes and ketones vol.69, pp.4, 2003, https://doi.org/10.1080/00958972.2015.1134792
  15. Green, rapid, and highly efficient syntheses of α , α′ ‐bis[(aryl or allyl)idene]cycloalkanones and 2‐[(aryl or allyl)idene]‐1‐indanones as potentially bi vol.67, pp.4, 2003, https://doi.org/10.1002/jccs.201900081
  16. Interlayer engineering of molybdenum disulfide toward efficient electrocatalytic hydrogenation vol.66, pp.10, 2021, https://doi.org/10.1016/j.scib.2020.11.002