• Title/Summary/Keyword: catalyst electrode

Search Result 300, Processing Time 0.024 seconds

RF Magnetron Sputtering을 이용하여 제작한 불용성 촉매전극의 해수전해 특성

  • Lee, Hyeon-Seok;Kim, Se-Gi;Seok, Hye-Won;Choe, Heon-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.29.2-29.2
    • /
    • 2011
  • 수용액 상에서 유기물이나 무기물의 전해산화에는 높은 산소과전압과 그 화학종에 대한 화학적, 물리적 안정성이 요구되며, 이러한 요구 조건을 만족하는 소재로써 백금족의 원소가 통상 사용되고 있으나, 가격이 매우 비싸다는 단점을 가지고 있다. 특히 고전류밀도 폐수처리 불용성 전극은 수용액을 전기분해할 때 높은 전류밀도를 낼 수 있으며, 폐수에 혼합되어 있는 각종 화학적 성분에 대한 화학적, 물리적 내구성이 있는 전극으로서, 현재 기존의 수처리용 전극은 금속 Ti을 기판으로 하여 그 위에 불용성 촉매로써 전도성 금속염을 도포, 열처리를 반복하여 산화물의 형태로 수 ${\mu}m$의 두께로 코팅하는 이른바, DSA (Dimensionally Stable Anodes) 전극을 사용하고 있는데, 이는 제조 단가의 상승과 금속 Ti 기판 상에 코팅된 전도성 금속산화물의 미약한 접착력으로 인한 탈리로 전극 전체의 성능 저하 및 수명 단축을 초래하는 문제점이 있다. 본 연구에서는 상기의 문제점을 개선하고자 대표적 불용성 촉매 물질인 백금을 RF magnetron 스퍼터링방식으로 100~300 nm 두께로 성막하여 Ti 기판에 대한 불용성 촉매 물질의 부착력과 내구성 및 모의 해수에 대한 해수전해 특성 등을 평가하였다.

  • PDF

A Study on Manufacture and Design of Low Voltage.Low Electric Power System by PEMFC Single cell (PEMFC 단위 셀의 제작 및 저전압.저전력 시스템 설계에 관한 연구)

  • Ryu, Yun-Sim;Ahn, Ho-Gyun;Seo, Jung-Rang;Kim, Sung-Hoon;Lee, Chang-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.193-195
    • /
    • 2007
  • These days, to change the new & renewable energy change the subject because environmental pollution and exhausted fossil power. The most notable Fuel cells by one of the new & renewable energies are one of very useful power conversion sources. Their advantages are low environmental pollution, highly efficient power generation, diversity of fuels (natural gas, LPG, methanol and naphtha), and reusability of exhaust heat, modularity, and faster installation. PEMFC by one of the Fuel Cells is the energy of new technology which is produced by the electric chemical reaction directly. The essential composition elements of PEMFC stack are membrane electrode assembly (MEA), catalyst, Bipolar Plate. Under the this study, know-how is manufacturing single cell of PEMFC and Study design of Low Voltage, Low Electric Power System by PEMFC Single Cell.

  • PDF

Electrochemical Conversion of Carbon Dioxide (이산화탄소의 전기화학적 변환)

  • Song, Ji-Eun;Shin, Woon-Sup
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.131-141
    • /
    • 2009
  • The conversion of carbon dioxide to value-added compounds has been attracted to solve the environmental problems due to the climate change caused by greenhouse effect in addition to recycle the abundant and renewable carbon source. For utilizing carbon dioxide to useful compounds, the development of catalysts and optimization of experimental conditions are indispensable since carbon dioxide is the most stable one among carbon compounds and the a certain amount of energy is required for the carbon dioxide conversion. The technologies developed for the electrochemical carbon dioxide conversion were reviewed in terms of electrocatalyst which can be electrode material, inorganic complex, and enzyme. This field should be developed further since no good catalyst having selectivity, efficiency, and stability all together.

Single Crystalline ${\beta}$-Na0.33V2O5 Nanowires Based Supercapacitor

  • Trang, Nguyen Thi Hong;Shakir, Imran;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.587-587
    • /
    • 2012
  • Supercapacitors, which can deliver significant energy with high power density, have attracted a lot of attention due to their potential application in energy storage. Among various oxide materials, sodium vanadate has been recognized as one of the most promising electrode materials because of high electrical conductivity. In addition, larger layer spacing of ${\beta}$-Na0.33V2O5 compared to V2O5 makes easier Li+ insertion. Moreover, ${\beta}$-Na0.33V2O5 has a tunnel like structure along b axis with 3 kinds of V site allowing it to enhance the ion intercalation by introducing three different intercalation sites along the tunnel. The tunnel can act as a fast diffusion path for ion diffusion, which can improve the overall charge storage kinetics. In this study, high quality single crystalline sodium vanadate (${\beta}$-Na0.33V2O5) nanowires were grown directly on Pt coated $SiO_2$ substrate by a facile chemical solution deposition method without employing catalyst, surfactant or carrier gas. The results show that great enhancement in capacitance was observed compared with previous reports.

  • PDF

High Temperature Water Electrolysis of Covalently Cross-linked CL-SPEEK/Cs-TSiA/Ceria Composite Membrane (공유가교 CL-SPEEK/Cs-TSiA/Ceria 복합막의 고온 수전해 성능)

  • JUNG, HYEYOUNG;YOON, DAEJIN;CHUNG, JANGHOON;MOON, SANGBONG
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.5
    • /
    • pp.433-439
    • /
    • 2017
  • The high temperature performance of PEM type electrolyser at $120^{\circ}C$ based on covalently cross-linked sulfonated poly ether ether ketone (SPEEK) composie membrane was investigated. Ion conductivity and other properties of SPEEK membrane were improved by adding heteropoly acid and Ceria. The membrane electrode assemblies were prepared using commercial PtC and nano-sized $IrRuO_2$ catalyst by electro-spraying and decal process. Voltage efficiency of MEA equipped with SPEEK membrane was slightly better than that of $Nafion^{(R)}$ membrane, due to its higher proton conductivity at high temperature. The cell performance of MEA with CL-SPEEK/Cs-TSiA/Ceria is 1.71 V at $1A/cm^2$ and $120^{\circ}C$.

Electrochemical Performances of Lithium-air Cell with Carbon Materials

  • Park, C.K.;Park, S.B.;Lee, S.Y.;Lee, H.;Jang, H.;Cho, W.I.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3221-3224
    • /
    • 2010
  • This study investigates the requirements of lithium-air cathodes, which directly influence discharge capacity. The cathodes of Li-air cell are made by using five different carbon materials, such as Ketjen black EC600JD, Super P, Ketjen black EC300JD, Denka black, and Ensaco 250G. The Ketjen black EC600JD provides discharge capacity of 2600 mAh/g per carbon weight, while that of Ensaco 250G shows only 579 mAh/g. To figure out the differences of discharge capacity from carbon materials, their surface area and pore volume are analyzed. These are found out to be the critical factors in determining discharge capacity. Furthermore, carbon loading on Ni foam and amounts of electrolyte are significant factors that affect discharge capacity. In order to investigate catalyst effect, electrolytic manganese dioxide (EMD) is incorporated and delivered 4307 mAh/g per carbon weight. This infers that EMD facilitates to break $O_2$ interactions and leads to enhance discharge capacity.

Study of Hydrogen Evolution Reaction by Molybdenum Oxide Doped TiO2 Nanotubes (몰리브덴 산화물이 도핑된 티타늄 나노튜브전극의 수소 발생 반응 연구)

  • Oh, Kiseok;Yoo, Hyeonseok;Lee, Gibaek;Choi, Jinsub
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.6
    • /
    • pp.521-529
    • /
    • 2016
  • In this study, titanium nanotubes, prepared by anodization method, showing high surface and strong chemical stability in acidic and basic media, have been employed for the application to the electrodes for water splitting in KOH solution. Due to its high polarization resistance of $TiO_2$ itself, proper catalysts are essentially required to reduce overpotentials for water oxidation and reduction. Most of academic literature showed noble metal catalysts for foreign dopants in $TiO_2$ electrodes. From commercialization point of view, screening of low-cost catalyst is important. Herein, we propose molybdenum oxide as low-cost catalysts among various catalysts tested in the experiments, which exhibits the highest performance for hydrogen evolution reaction in highly alkaline solution. We showed that molybdenum oxide doped electrode can be operated in extreme acidic and basic conditions as well.

Poly-3,4-dihydroxybenzaldehyde Modified with 3,4-dihydroxybenzoic acid for Improvement of Electrochemical Activities

  • Cha Seong-Keuck
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.167-172
    • /
    • 2004
  • 3,4-dihydroxybenzaldehyde(3,4-DHB) was oxidatively el electropolymerized on glassy carbon (GC) electrodes to prepare CC/p-3,4-DHB type electrodes, which were subsequently modified with 3,4-dihydroxybenzoic acid(3,4-DHBA) using 0.05M HCI as a catalyst. The esterification reactions were performed between -OH sites on the polymeric film surface of the p-3,4-DHB and the -COOH sites within the 3,4-DHBA molecules in solution. These reactions had a rate constant value of $1.1\times10^{-1}\;s^{-1}$ for the esterification step as obtained from the first-order rate constant in the solution. The electrochemical responses of the GC/p-3,4-DHB-3,4-DHBA electrodes exert an influence upon the buffer solution, its pH and applied potential ranges. The redox process of the electrode was more easily controlled by charge transfer kinetics than that of the CC/p-3,4-DHB. The modified electrodes had redox active sites that were 10 times more active than those present before modification. The electrical admittance of the modified electrodes was also three times higher than that of the unmodified electrodes. After being annealed in ethanol for 20 hrs the electrodes brought about a 3.3 times greater change of water molecules in the redox reaction. The modified electrodes are stable in the potential range of 0.4 to 0.55V.

The Improvement of the Ionization on Micro Mass Spectrometer using Carbon Nanotube Emitter (탄소나노튜브 방출원을 통한 초소형 질량분석기의 이온화 향상)

  • Song, S.H.;Han, Kyu-Sung;Hong, Nguyen Tuan;Lee, S.I.;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1004-1009
    • /
    • 2009
  • Recently, mass spectrometers are widely used for in-situ chemical analysis. It has rapid response and high sensitivity. In this paper, we present the fabrication and test of a cold cathode emitter for micro mass spectrometer using CNTs(Carbon nano tubes). The CNTs have good mechanical, electrical and chemical characteristics. So they have a long life time and strong robustness. The micro mass spectrometer is composed of the glass substrate and the silicon substrate. The glass substrate is constructed by electrodes for TOF(Time-of-flight) which analyze an ion with mass to charge ratio as ion separator. The silicon substrate is highly doped wafer which is patterned for gate electrode and then 100 11m dry etching to grow the CNTs as the electron emitter. The CNTs are grown by HFCVD(Hot filament chemical vapor deposition) with sputtering the catalyst. We successfully attained to grow the CNTs and to test the characteristics.

Development of Air Cutoff Valve for Improving Durability of Fuel Cell (연료전지 내구성능 향상을 위한 공기차단밸브 개발)

  • Park, Jeonghee;Lee, Changha;Kwon, Hyuckryul;Kim, Chimyung;Choi, Kyusung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • In this study, among in various scenarios of the duration degradation of the fuel cell, countermeasures for the cathode carbon carrier oxidation and the deactivation of catalyst by hydrogen / air interface formation have been studied. so the system was applied to the air cutoff valve. In terms of the component, the cold start performance, electrical stability, the airtight performance were mainly designed and their performance was confirmed. And in terms of the system, the air electrode flow is blocked off, so the oxygen concentration drops when system is powered off, As a result, By reducing unit cell voltage which affect the durability of the fuel cell reached up to 0.8V, the improved durability of the fuel cell was confirmed.