Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.11.3221

Electrochemical Performances of Lithium-air Cell with Carbon Materials  

Park, C.K. (Advanced Battery Center, Korea Institute of Science and Technology)
Park, S.B. (Advanced Battery Center, Korea Institute of Science and Technology)
Lee, S.Y. (Advanced Battery Center, Korea Institute of Science and Technology)
Lee, H. (Clean Energy Center, Korea Institute of Science and Technology)
Jang, H. (Department of Materials Science and Engineering, Korea University)
Cho, W.I. (Advanced Battery Center, Korea Institute of Science and Technology)
Publication Information
Abstract
This study investigates the requirements of lithium-air cathodes, which directly influence discharge capacity. The cathodes of Li-air cell are made by using five different carbon materials, such as Ketjen black EC600JD, Super P, Ketjen black EC300JD, Denka black, and Ensaco 250G. The Ketjen black EC600JD provides discharge capacity of 2600 mAh/g per carbon weight, while that of Ensaco 250G shows only 579 mAh/g. To figure out the differences of discharge capacity from carbon materials, their surface area and pore volume are analyzed. These are found out to be the critical factors in determining discharge capacity. Furthermore, carbon loading on Ni foam and amounts of electrolyte are significant factors that affect discharge capacity. In order to investigate catalyst effect, electrolytic manganese dioxide (EMD) is incorporated and delivered 4307 mAh/g per carbon weight. This infers that EMD facilitates to break $O_2$ interactions and leads to enhance discharge capacity.
Keywords
Li-air battery; Air electrode; Cathode requirements;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Ogasawara, T.; Debart, A.; Holzapfel, M.; Bruce, P. G. J. Am. Chem. Soc. 2006, 128, 1390.   DOI   ScienceOn
2 Kuboki, T. Okuyama, T.; Ohsaki, T.; Takami, N. J. Power Sources 2005, 146, 766.   DOI   ScienceOn
3 Zhang, S. S.; Foster, D.; Read, J. J. Power Sources 2010, 195, 1235.   DOI   ScienceOn
4 Tran, C.; Yang, X. Q.; Qu, D. J. Power Sources 2010, 195, 2057.   DOI   ScienceOn
5 Abraham, K. M.; Jiang, Z. J. Electrochem. Soc. 1996, 143, 1.   DOI
6 Read, J. J. Electrochem. Soc. 2002, 149, A1190.   DOI   ScienceOn
7 Beattie, S. D.; Masolescu, D. M.; Blair, S. L. J. Electrochem. Soc. 2009, 156, A44.   DOI   ScienceOn
8 Kowalczk, I. Read, J.; Salomon, M. Pure Appl. Chem. 2007, 79, 851.   DOI   ScienceOn
9 Debart, A.; Paterson, A. J.; Bao, J.; Bruce, P. G. Angew. Chem. Int. 2008, 47, 4521.   DOI   ScienceOn
10 Read, J. J. Electrochem. Soc. 2006, 153, A96.   DOI   ScienceOn