• Title/Summary/Keyword: cast net

Search Result 55, Processing Time 0.024 seconds

STRAIN RATE CHANGE FROM 0.04 TO 0.004%/S IN AN ENVIRONMENTAL FATIGUE TEST OF CF8M CAST STAINLESS STEEL

  • Jeong, Ill-Seok;Kim, Wan-Jae;Kim, Tae-Ryong;Jeon, Hyun-Ik
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.83-88
    • /
    • 2011
  • To define the effect of strain rate variation from 0.04% to 0.004%/s on environmental fatigue of CF8M cast stainless steel, which is used as a primary piping material in nuclear power plants, low-cycle fatigue tests were conducted at operating pressure and temperature condition of a pressurized water reactor, 15 MPa and $315^{\circ}C$, respectively. A high-pressure and high-temperature autoclave and cylindrical solid fatigue specimens were used for the strain-controlled low-cycle environmental fatigue tests. It was observed that the fatigue life of CF8M stainless steel is shortened as the strain rate decreases. Due to the effect of test temperature, the fatigue data of NUREG-6909 appears a slightly shorter than that obtained by KEPRI at the same stress amplitude of $1{\times}10^3$ MPa. The environmental fatigue correction factor $F_{en}$'s calculated with inputs of the test data increases with high strain amplitude, while the $F_{en}$'s of NUREG-6909 remain constant regardless of strain amplitude.

Assessment of Residual Tensile Strength on Cast Iron Water Pipes (주철관의 잔존강도 평가에 관한 연구)

  • Bae, Cheol-Ho;Kim, Ju-Hwan;Kim, Jeong-Hyun;Hong, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.867-874
    • /
    • 2006
  • The goal of this study is to assess cast iron pipes (CIPs) and present a residual tensile strength prediction model using pit characteristics and fracture toughness. The results is the followings. First, average pit depths of collected CIPs were in the range from 0.63 to 6.49 mm, loss of tensile strength compared with net metallic tensile strength were from -7.06 to 67.91 percent. Second, fracture toughness for NS-CR-1, NS-CR-2, and NS(2)-CR-1 were in the range from 62.85 to $89.39kgf/mm^2{\sqrt{mm}}$, and average of those samples was $73.69kgf/mm^2{\sqrt{mm}}$ on CIPs. Third, the models developed in this study by using pit characteristics and fracture toughness showed a little good correlation for measured residual tensile strength, and the results will be expected to help for water utilities to manage CIPs in the aspect of rehabilitation and assessment of structural safety on CIPs.

Effect of thermal aging on the mechanical, intergranular corrosion and corrosion fatigue properties of Z3CN20.09M cast duplex stainless steel

  • Ti, Wenxin;Wu, Huanchun;Xue, Fei;Zhang, Guodong;Peng, Qunjia;Fang, Kewei;Wang, Xitao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2591-2599
    • /
    • 2021
  • The effect of thermal aging at 475 ℃ and 750 ℃ of Z3CN20.09M cast duplex stainless steel (CDSS) on microstructure, mechanical and intergranular corrosion properties were investigated by transmission electron microscope (TEM), nano indenter, scanning electron microscope (SEM) and corrosion fatigue test system. The result indicated that the spinodal decomposition and G precipitated were occurred after aged at 475 ℃, as well as sigma precipitated at 750 ℃. The microstructure degeneration of ferrite was saturated after aged for 2000h and 200 h at 475 ℃ and 750 ℃ respectively. The mechanical properties, intergranular corrosion resistance and corrosion fatigue lives were continuing deteriorated with increasing the aging time at both temperatures. The difference of the degeneration mechanisms of Z3CN20.09M CDSS aged at 475 ℃ and 750 ℃ was analyzed.

A comprehensive study of the effects of long-term thermal aging on the fracture resistance of cast austenitic stainless steels

  • Collins, David A.;Carter, Emily L.;Lach, Timothy G.;Byun, Thak Sang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.709-731
    • /
    • 2022
  • Loss of fracture resistance due to thermal aging degradation is a potential limiting factor affecting the long-term (80+ year) viability of nuclear reactors. To evaluate the effects of decades of aging in a practical time frame, accelerated aging must be employed prior to mechanical characterization. In this study, a variety of chemically and microstructurally diverse austenitic stainless steels were aged between 0 and 30,000 h at 290-400 ℃ to simulate 0-80+ years of operation. Over 600 static fracture tests were carried out between room temperature and 400 ℃. The results presented include selected J-R curves of each material as well as K0.2mm fracture toughness values mapped against aging condition and ferrite content in order to display any trends related to those variables. Results regarding differences in processing, optimal ferrite content under light aging, and the relationship between test temperature and Mo content were observed. Overall, it was found that both the ferrite volume fraction and molybdenum content had significant effects on thermal degradation susceptibility. It was determined that materials with >25 vol% ferrite are unlikely to be viable for 80 years, particularly if they have high Mo contents (>2 wt%), while materials less than 15 vol% ferrite are viable regardless of Mo content.

Contact Element Generation Method for Casting Analysis by using Projection Method (Projection Method에 의한 주조 해석용 접촉 요소망 생성 기법)

  • Nam, Jeong-Ho;Kwak, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.40 no.6
    • /
    • pp.146-150
    • /
    • 2020
  • In general, hot metal castings contract and molds expand during the cooling step of a casting process. Therefore, it is important to consider both the casting and mold at the same time in a casting process analysis. For a more accurate analysis that includes the contact characteristics, matching each node of the casting and mold in the contact area is recommended. However, it is very difficult to match the nodes of the casting and the mold when generating elements due to the geometric problem of CAD model data. The present study proposes a mesh generation technique that considers mechanical contact between the casting and the mold in a casting analysis (finite element analysis). The technique focuses on the fact that the mold surrounds the casting. After generating the 3D elements for the casting, the surface elements of the casting in contact with the mold are projected inside the mold to create contact elements that coincide with the contact surface of the casting. It was confirmed that high-quality contact element information and a 3D element net can be automatically generated by the method proposed in this study.

Seismic behavior of simplified electrical cabinet model considering cast-in-place anchor in uncracked and cracked concretes

  • Bub-Gyu Jeon;Sung-Wan Kim;Sung-Jin Chang;Dong-Uk Park;Hong-Pyo Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4252-4265
    • /
    • 2023
  • In the case of nuclear power plants near end of their design life, a reassessment of the performance of safetyrelated equipment may be necessary to determine whether to shut down or extend the operation of the power plant. Therefore, it is necessary to evaluate the level of performance decline due to degradation. Electrical cabinets, including MCC and switchgear, are representative safety-related equipment. Several studies have assessed the degradation and seismic performance of nuclear power plant equipment. Most of those researches are limited to individual components due to the size of safety-related equipment and test equipment. However, only a few studies assessed the degradation performance of electrical cabinets. The equipment of various nuclear power plants is anchored to concrete foundations, and crack in concrete foundations is one of the most representative of degradation that could be visually confirmed. However, it is difficult to find a study for analysis through testing the effect of cracks in concrete foundations on the response of electrical cabinet internal equipment fixed by anchors. In this study, using a simple cabinet model considering cast-in-place anchor in uncracked and cracked concretes, a tri-axial shaking table tests were performed and the seismic behavior were observed.

Applicability of nonlinear ultrasonic technique to evaluation of thermally aged CF8M cast stainless steel

  • Kim, Jongbeom;Kim, Jin-Gyum;Kong, Byeongseo;Kim, Kyung-Mo;Jang, Changheui;Kang, Sung-Sik;Jhang, Kyung-Young
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.621-625
    • /
    • 2020
  • Cast austenitic stainless steel (CASS) is used for fabricating different components of the primary reactor coolant system of pressurized water reactors. However, the thermal embrittlement of CASS resulting from long-term operation causes structural safety problems. Ultrasonic testing for flaw detection has been used to assess the thermal embrittlement of CASS; however, the high scattering and attenuation of the ultrasonic wave propagating through CASS make it difficult to accurately quantify the flaw size. In this paper, we present a different approach for evaluating the thermal embrittlement of CASS by assessing changes in the material properties of CASS using a nonlinear ultrasonic technique, which is a potential nondestructive method. For the evaluation, we prepared CF8M specimens that were thermally aged under four different heating conditions. Nonlinear ultrasonic measurements were performed using a contact piezoelectric method to obtain the relative ultrasonic nonlinearity parameter, and a mini-sized tensile test was performed to investigate the correlation of the parameter with material properties. Experimental results showed that the ultrasonic nonlinearity parameter had a correlation with tensile properties such as the tensile strength and elongation. Consequently, we could confirm the applicability of the nonlinear ultrasonic technique to the evaluation of the thermal embrittlement of CASS.

Corrosion and mechanical properties of hot-rolled 0.5%Gd-0.8%B-stainless steels in a simulated nuclear waste treatment solution

  • Jung, Moo Young;Baik, Youl;Choi, Yong;Sohn, D.S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.207-213
    • /
    • 2019
  • Corrosion and mechanical behavior of the hot-rolled 0.5%Gd-0.8%B-stainless steel to develop a spent nuclear fuel storage material was studied in a simulated nuclear waste treatment condition with rolling condition. The austenite and ferrite phases of the 0.5%Gd-0.8%B-stainless steels are about 88:12. The average austenite and ferrite grain size of the plane normal to rolling, transverse and normal directions of the hot rolled specimens are about 5.08, 8.94, 19.35, 23.29, 26.00 and 18.11 [${\mu}m$], respectively. The average micro-hardness of the as-cast specimen is 200.4 Hv, whereas, that of the hot-rolled specimen are 220.1, 204.7 and 203.5 [$H_v$] for the plane normal to RD, TD and ND, respectively. The UTS, YS and elongation of the as-cast and the hot-rolled specimen are 699, 484 [MPa], 34.0%, and 654, 432 [MPa] and 33.3%, respectively. The passivity was observed both for the as-cast and the hot rolled specimens in a simulated nuclear waste solution. The corrosion potential and corrosion rate of the as-casted specimens are $-343[mV_{SHE}]$ and $3.26{\times}10^{-7}[A/cm^2]$, whereas, those of the hot rolled specimens with normal to ND, RD and TD are -630, -512 and -620 [$mV_{SHE}$] and $6.12{\times}10^{-7}$, $1.04{\times}10^{-6}$ and $6.92{\times}10^{-7}[A/cm^2]$, respectively. Corrosion tends to occur preferentially Cr and B rich area.

Adjustment of Roll Gap for the Dimension Accuracy of Bar in Hot Bar Rolling Process

  • Kim, Dong-Hwan;Kim, Byung-Min;Lee, Youngseog
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.56-62
    • /
    • 2003
  • The objective of this study is to adjust the roll gap for the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes for round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

Advancement in Powder Metallurgy of Aluminum Alloys

  • Takeda, Yoshinobu
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.340-344
    • /
    • 1998
  • Along with the growth of conventional ferrous powder metallurgy (PM), PM of aluminum alloys has been intensively investigated in Japan. Although rapidly solidified aluminum alloy powder was first used in the USA,/sup 1)/ commercialization for consumer market was first realized in Japan./sup 2)/ In order to achieve the viable cost-performance including Near Net Shape (NNS) formability, we developed three processes, powder extrusion, powder forging and sintering. The new powder extrusion process does not use either capsulation or vacuum degassing. The new powder forging does not need lateral flow. The new sintering process does not use liquid phase. The performance achieved by the processes is outstanding mechanical or physical properties that has potential to substitute cast iron, steel, titanium Metal Matrix Composite (MMC) or Ingot Metallurgy (IM) aluminum alloys. Cooperation with customers, powder suppliers and research associations contributed to the advancement of PM aluminum alloys in Japan.

  • PDF