DOI QR코드

DOI QR Code

Effect of thermal aging on the mechanical, intergranular corrosion and corrosion fatigue properties of Z3CN20.09M cast duplex stainless steel

  • Ti, Wenxin (Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing) ;
  • Wu, Huanchun (Plant Life Management Center, Suzhou Nuclear Power Research Institute) ;
  • Xue, Fei (Plant Life Management Center, Suzhou Nuclear Power Research Institute) ;
  • Zhang, Guodong (Plant Life Management Center, Suzhou Nuclear Power Research Institute) ;
  • Peng, Qunjia (Plant Life Management Center, Suzhou Nuclear Power Research Institute) ;
  • Fang, Kewei (Plant Life Management Center, Suzhou Nuclear Power Research Institute) ;
  • Wang, Xitao (Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing)
  • Received : 2020.09.29
  • Accepted : 2021.02.01
  • Published : 2021.08.25

Abstract

The effect of thermal aging at 475 ℃ and 750 ℃ of Z3CN20.09M cast duplex stainless steel (CDSS) on microstructure, mechanical and intergranular corrosion properties were investigated by transmission electron microscope (TEM), nano indenter, scanning electron microscope (SEM) and corrosion fatigue test system. The result indicated that the spinodal decomposition and G precipitated were occurred after aged at 475 ℃, as well as sigma precipitated at 750 ℃. The microstructure degeneration of ferrite was saturated after aged for 2000h and 200 h at 475 ℃ and 750 ℃ respectively. The mechanical properties, intergranular corrosion resistance and corrosion fatigue lives were continuing deteriorated with increasing the aging time at both temperatures. The difference of the degeneration mechanisms of Z3CN20.09M CDSS aged at 475 ℃ and 750 ℃ was analyzed.

Keywords

Acknowledgement

The authors would like to appreciate the financial support from the Natural science foundation (Youth fund) of Jiangsu province (BK20180211) and Major projects on basic and applied basic research of Guangdong province (2019B030302011).

References

  1. S.S.M. Tavares, V.F. Terra, P.D. Lima Neto, D.E. Matos, Corrosion resistance evaluation of the UNS S31803 duplex stainless steels aged at low temperatures (350 to 550℃) using DLEPR tests, J. Mater. Sci. 40 (2005) 4025-4028. https://doi.org/10.1007/s10853-005-1993-9
  2. J.K. Sahu, U. Krupp, R.N. Ghosh, H.J. Christ, Effect of 475℃ embrittlement on the mechanical properties of duplex stainless steel, Mater. Sci. Eng., A 508 (2009) 1-14.
  3. Z. Wang, F. Xue, J. Jiang, W. Ti, W. Yu, Experimental evaluation of temper aging embrittlement of cast austenitic stainless steel from PWR, Eng. Fail. Anal. 18 (2011) 403-410. https://doi.org/10.1016/j.engfailanal.2010.09.022
  4. K. Chandra, R. Singhal, V. Kain, V.S. Raja, Low temperature embrittlement of duplex stainless steel: correlation between mechanical and electrochemical behavior, Mater. Sci. Eng., A 527 (2010) 3904-3912.
  5. Y.Q. Wang, J. Han, H.C. Wu, B. Yang, X.T. Wang, Effect of sigma phase precipitation on the mechanical and wear properties of Z3CN20.09M cast duplex stainless steel, Nucl. Eng. Des. 259 (2013) 1-7. https://doi.org/10.1016/j.nucengdes.2013.02.037
  6. F. Xue, Z. Wang, G. Shu, W. Yu, H. Shi, W. Ti, Thermal aging effect on Z3CN20.09M cast duplex stainless steel, Nucl. Eng. Des. 239 (2009) 2217-2223. https://doi.org/10.1016/j.nucengdes.2009.06.009
  7. H.C. Wu, B. Yang, S.L. Wang, M.X. Zhang, Y.Z. Shi, Y.F. Chen, Y.H. Sun, Effect of thermal aging on corrosion fatigue of Z3CN20.09M duplex stainless steel in high temperature water, Mater. Sci. Eng., A 655 (2016) 183-192.
  8. S. Li, Y. Wang, H. Wang, C. Xin, X. Wang, Effects of long-term thermal aging on the stress corrosion cracking behavior of cast austenitic stainless steels in simulated PWR primary water, J. Nucl. Mater. 469 (2016) 262-268. https://doi.org/10.1016/j.jnucmat.2015.11.043
  9. S. Li, Y. Wang, X. Wang, F. Xue, G-phase precipitation in duplex stainless steels after long-term thermal aging: a high-resolution transmission electron microscopy study, J. Nucl. Mater. 452 (2014) 382-388. https://doi.org/10.1016/j.jnucmat.2014.05.069
  10. H.P. Seifert, S. Ritter, H.J. Leber, Corrosion fatigue crack growth behaviour of austenitic stainless steels under light water reactor conditions, Corrosion Sci. 55 (2012) 61-75. https://doi.org/10.1016/j.corsci.2011.10.005
  11. Y. Huang, K. Kawakita, A. Kimura, Stress corrosion cracking susceptibility of 310S stainless steel in hydrogenated hot water, Nucl. Mater. Energ. 15 (2018) 103-109. https://doi.org/10.1016/j.nme.2018.03.004
  12. S.L. Li, H.L. Zhang, Y.L. Wang, S.X. Li, K. Zheng, F. Xue, X.T. Wang, Annealing induced recovery of long-term thermal aging embrittlement in a duplex stainless steel, Mater. Sci. Eng., A 564 (2013) 85-91.
  13. Y. Chen, B. Alexandreanu, W.Y. Chen, K. Natesan, Z. Li, Y. Yang, A.S. Rao, Cracking behavior of thermally aged and irradiated CF-8 cast austenitic stainless steel, J. Nucl. Mater. 466 (2015) 560-568. https://doi.org/10.1016/j.jnucmat.2015.08.047
  14. R. Silva, L.F.S. Baroni, M.B.R. Silva, C.R.M. Afonso, S.E. Kuri, C.A.D. Rovere, Effect of thermal aging at 475℃ on the properties of lean duplex stainless steel 2101, Mater. Char. 114 (2016) 211-217. https://doi.org/10.1016/j.matchar.2016.03.002
  15. Z. Wang, F. Xue, W. Guo, H. Shi, G. Zhang, G. Shu, Investigation of thermal aging damage mechanism of the cast duplex stainless steel, Nucl. Eng. Des. 240 (2010) 2538-2543. https://doi.org/10.1016/j.nucengdes.2010.04.044
  16. F. Iacoviello, F. Casari, S. Gialanella, Effect of "475℃ embrittlement" on duplex stainless steels localized corrosion resistance, Corrosion Sci. 47 (2005) 909-922. https://doi.org/10.1016/j.corsci.2004.06.012
  17. Y. Chen, X. Dai, X. Chen, B. Yang, The characterization of G-phase in Fe20Cr9Ni cast duplex stainless steel, Mater. Char. 149 (2019) 74-81. https://doi.org/10.1016/j.matchar.2019.01.012
  18. J. Kwon, Y. Park, J. Park, W. Lee, Y. Lee, An investigation of the degradation characteristics for casting stainless steel, CF8M, under high temperatures, Nucl. Eng. Des. 198 (2000) 227-240. https://doi.org/10.1016/S0029-5493(99)00315-5
  19. Y.H. Yao, J.F. Wei, Z.P. Wang, Effect of long-term thermal aging on the mechanical properties of casting duplex stainless steels, Mater. Sci. Eng., A 551 (2012) 116-121.
  20. K.H. Lo, C.T. Kwok, W.K. Chan, D. Zeng, Corrosion resistance of duplex stainless steel subjected to long-term annealing in the spinodal decomposition temperature range, Corrosion Sci. 55 (2012) 267-271. https://doi.org/10.1016/j.corsci.2011.10.027
  21. C. Garcia, F. Martin, Y. Blanco, M.L. Aparicio, Effect of ageing heat treatments on the microstructure and intergranular corrosion of powder metallurgy duplex stainless steels, Corrosion Sci. 52 (2010) 3725-3737. https://doi.org/10.1016/j.corsci.2010.07.023
  22. J. Pavlu, J. Vrestal, M. Sob, Ab initio study of formation energy and magnetism of sigma phase in Cr-Fe and Cr-Co systems, Intermetallics 18 (2010) 212-220. https://doi.org/10.1016/j.intermet.2009.07.018
  23. J. Cieslak, S.M. Dubiel, J. Przewoznik, J. Tobola, Structural and hyperfine characterization of s-phase Fe-Mo alloys, Intermetallics 31 (2012) 132-136. https://doi.org/10.1016/j.intermet.2012.06.015
  24. K.H. Lo, C.T. Kwok, W.K. Chan, Characterisation of duplex stainless steel subjected to long-term annealing in the sigma phase formation temperature range by the DLEPR test, Corrosion Sci. 53 (2011) 3697-3703. https://doi.org/10.1016/j.corsci.2011.07.013
  25. Y.Q. Wang, B. Yang, J. Han, H.C. Wu, X.T. Wang, Effect of precipitated phases on the pitting corrosion of Z3CN20.09M cast duplex stainless steel, Mater. Trans. 54 (2013) 839-843. https://doi.org/10.2320/matertrans.M2012410
  26. H.C. Wu, B. Yang, Y.Q. Wang, Effect of sigma phase on the low cycle fatigue property of Z3CN20.09M cast duplex stainless steel in high temperature water, Mater. Corros. 66 (2015) 663-669. https://doi.org/10.1002/maco.201407721
  27. H.C. Wu, B. Yang, S.L. Wang, M.X. Zhang, Y.Z. Shi, Y.F. Chen, Y.H. Sun, Effect of thermal aging on corrosion fatigue of Z3CN20.09M duplex stainless steel in high temperature water, Mater. Sci. Eng., A 655 (2016) 183-192.
  28. S.L. Li, Y.L. Wang, H.L. Zhang, S.X. Li, K. Zheng, F. Xue, X.T. Wang, Microstructure evolution and impact fracture behaviors of Z3CN20-09M stainless steels after long-term thermal aging, J. Nucl. Mater. 433 (2013) 41-49. https://doi.org/10.1016/j.jnucmat.2012.09.004
  29. S. Li, Y. Wang, S. Li, H. Zhang, F. Xue, X. Wang, Microstructures and mechanical properties of cast austenite stainless steels after long-term thermal aging at low temperature, Mater. Des. 50 (2013) 886-892. https://doi.org/10.1016/j.matdes.2013.02.061
  30. Yuefeng Chen, Bin Yang, Yangtao Zhou, Yuan Wu, H. Zhu, Evaluation of pitting corrosion in duplex stainless steel Fe20Cr9Ni for nuclear power application, Acta Mater. 197 (2020) 172-183. https://doi.org/10.1016/j.actamat.2020.07.046
  31. Y.Q. Wang, J. Han, B. Yang, X.T. Wang, Strengthening of s phase in a Fe20Cr9Ni cast austenite stainless steel, Mater. Char. 84 (2013) 120-125. https://doi.org/10.1016/j.matchar.2013.07.019
  32. K. Chandra, V. Kain, V.S. Raja, R. Tewari, G.K. Dey, Low temperature thermal ageing embrittlement of austenitic stainless steel welds and its electrochemical assessment, Corrosion Sci. 54 (2012) 278-290. https://doi.org/10.1016/j.corsci.2011.09.031
  33. C.A.D. Rovere, F.S. Santos, R. Silva, C.A.C. Souza, S.E. Kuri, Influence of longterm low-temperature aging on the microhardness and corrosion properties of duplex stainless steel, Corrosion Sci. 68 (2013) 84-90. https://doi.org/10.1016/j.corsci.2012.10.038
  34. C. Park, K. Hyuk-Sang, Effects of aging at 475 ℃ on corrosion properties of tungsten-containing duplex stainless steels, Corrosion Sci. 44 (2002) 2817-2830. https://doi.org/10.1016/S0010-938X(02)00079-3
  35. B. Deng, Y. Jiang, J. Xu, T. Sun, J. Gao, L. Zhang, W. Zhang, J. Li, Application of the modified electrochemical potentiodynamic reactivation method to detect susceptibility to intergranular corrosion of a newly developed lean duplex stainless steel LDX2101, Corrosion Sci. 52 (2010) 969-977. https://doi.org/10.1016/j.corsci.2009.11.020
  36. K.S. de Assis, F.V.V. de Sousa, M. Miranda, I.C.P. Margarit-Mattos, V. Vivier, O.R. Mattos, Assessment of electrochemical methods used on corrosion of superduplex stainless steel, Corrosion Sci. 59 (2012) 71-80. https://doi.org/10.1016/j.corsci.2012.02.014
  37. O.H. Basquin, ASTM 10 (1910) 625-630.
  38. L.F. Coffin, ASME (1954) 931-950.
  39. R. Merello, F.J. Botana, J. Botella, M.V. Matres, M. Marcos, Influence of chemical composition on the pitting corrosion resistance of non-standard low-Ni high-Mn-N duplex stainless steels, Corrosion Sci. 45 (2003) 909-921. https://doi.org/10.1016/S0010-938X(02)00154-3
  40. A.U. Malik, N.A. Siddiqi, S. Ahmad, I.N. Andijani, The effect of dominant alloy additions on the corrosion behavior of some conventional and high alloy stainless steels in seawater, Corrosion Sci. 37 (1995) 1521-1535. https://doi.org/10.1016/0010-938X(95)00043-J
  41. C.O.A. Olsson, D. Landolt, Passive films on stainless steels-chemistry, structure and growth, Electrochim. Acta 48 (2003) 1093-1104. https://doi.org/10.1016/S0013-4686(02)00841-1

Cited by

  1. A study on mechanical properties of ferritic alloy by physical testing for nuclear power fusion reactors vol.2083, pp.2, 2021, https://doi.org/10.1088/1742-6596/2083/2/022088