Browse > Article
http://dx.doi.org/10.1016/j.net.2021.08.022

A comprehensive study of the effects of long-term thermal aging on the fracture resistance of cast austenitic stainless steels  

Collins, David A. (Materials Science and Technology Division, Oak Ridge National Laboratory)
Carter, Emily L. (Earth Systems Science Division, Pacific Northwest National Laboratory)
Lach, Timothy G. (Materials Science and Technology Division, Oak Ridge National Laboratory)
Byun, Thak Sang (Materials Science and Technology Division, Oak Ridge National Laboratory)
Publication Information
Nuclear Engineering and Technology / v.54, no.2, 2022 , pp. 709-731 More about this Journal
Abstract
Loss of fracture resistance due to thermal aging degradation is a potential limiting factor affecting the long-term (80+ year) viability of nuclear reactors. To evaluate the effects of decades of aging in a practical time frame, accelerated aging must be employed prior to mechanical characterization. In this study, a variety of chemically and microstructurally diverse austenitic stainless steels were aged between 0 and 30,000 h at 290-400 ℃ to simulate 0-80+ years of operation. Over 600 static fracture tests were carried out between room temperature and 400 ℃. The results presented include selected J-R curves of each material as well as K0.2mm fracture toughness values mapped against aging condition and ferrite content in order to display any trends related to those variables. Results regarding differences in processing, optimal ferrite content under light aging, and the relationship between test temperature and Mo content were observed. Overall, it was found that both the ferrite volume fraction and molybdenum content had significant effects on thermal degradation susceptibility. It was determined that materials with >25 vol% ferrite are unlikely to be viable for 80 years, particularly if they have high Mo contents (>2 wt%), while materials less than 15 vol% ferrite are viable regardless of Mo content.
Keywords
Cast austenitic stainless steel; Thermal aging; Fracture toughness; Aging degradation; Molybdenum content; Centrifugal casting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T.S. Byun, Y. Yang, N.R. Overman, F. Yu, Effects of Thermal Aging in Cast Stainless Steels, Oak Ridge National Laboratory, Oak Ridge, 2015.
2 F. Xue, Z.-X. Wang, G. Shu, W. Yu, H.-J. Shi, W. Ti, Thermal aging effect on Z3CN20.09M cast duplex stainless steel, Nucl. Eng. Des. 239 (2009) 2217-2223.   DOI
3 H. Wen-Tai, R.W.K. Honeycombe, Structure of centrifugally cast austenitic stainless steels: Part 1 HK 40 as cast and after creep between 750 and 100℃, Mater. Sci. Technol. 1 (1985) 385-389.   DOI
4 T.S. Byun, D.A. Collins, T.G. Lach, E.L. Barkley, Toughness Degradation in Cast Stainless Steels during Long-Term Thermal Aging, Pacific Northwest National Laboratory, Richland, 2019.
5 D.A. Collins, E.L. Barkley, T.G. Lach, T.S. Byun, Effects of thermal aging on the fracture toughness of cast stainless steel CF8, Int. J. Pres. Ves. Pip. 173 (2019) 45-54.   DOI
6 C. Pareige, J. Emo, S. Saillet, C. Domain, P. Pareige, Kinetics of G-phase precipitation and spinodal decomposition in very long aged ferrite of a Mo-free duplex stainless steel, J. Nucl. Mater. 465 (2015) 383-389.   DOI
7 T. Takeuchi, J. Kameda, Y. Nagai, T. Toyama, Y. Matsukawa, Y. Nishiyama, K. Onizawa, Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels, J. Nucl. Mater. 425 (2012) 60-64.   DOI
8 J. Emo, C. Pareige, S. Saillet, C. Domain, P. Pareige, Kinetics of secondary phase precipitation during spinodal decomposition in duplex stainless steels: a kinetic Monte Carlo model-Comparison with atom probe tomography experiments, J. Nucl. Mater. 451 (2014) 361-365.   DOI
9 M. Shirdel, H. Mirzadeh, M.H. Parsa, Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: mechanisms, microstructures, mechanical properties, and TRIP effect, Mater. Char. 103 (2015) 150-161.   DOI
10 K.H. Lo, C.H. Shek, J.K.L. Lai, Recent developments in stainless steels, Mater. Sci. Eng. R 65 (2009) 39-104.   DOI
11 T.-H. Lee, H.-Y. Ha, B. Hwang, S.-J. Kim, E. Shin, Effect of carbon fraction on stacking fault energy of austenitic stainless steels, Metall. Mater. Trans. 43 (2012) 4455-4459.   DOI
12 Y. Chen, B. Alexandreanu, W.-Y. Chen, K. Natesan, Z. Li, Y. Yang, A.S. Rao, Cracking behavior of thermally aged and irradiated CF-8 cast austenitic stainless steel, J. Nucl. Mater. 466 (2015) 560-568.   DOI
13 O.K. Chopra, Estimation of Fracture Toughness of Cast Stainless Steels during Thermal Aging in LWR Systems: Rev. 2, United States Nuclear Regulatory Commission, Washington D.C., 2016.
14 Q. Zhang, S. Niverty, A.S.S. Singaravelu, J.J. Williams, E. Guo, T. Jing, N. Chawla, Microstructure and micropore formation in a centrifugally-cast duplex stainless steel via X-ray microtomography, Mater. Char. 148 (2019) 52-62.   DOI
15 M.H. Bina, Study on formation and morphology of sigma-phase in continuous annealing furnace roller, Eng. Fail. Anal. 34 (2013) 174-180.   DOI
16 S. Li, Y. Wang, H. Wang, C. Xin, X. Wang, Effects of long-term thermal aging on the stress corrosion cracking behavior of cast austenitic stainless steels in simulated PWR primary water, J. Nucl. Mater. 469 (2016) 262-268.   DOI
17 Z. Li, W.-Y. Lo, Y. Chen, J. Pakarinem, Y. Wu, T. Allen, Y. Yang, Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel, J. Nucl. Mater. 466 (2015) 201-207.   DOI
18 Y.H. Yao, J.F. Wei, Z.P. Wang, Effect of long-term thermal aging on the mechanical properties of casting duplex stainless steels, Mater. Sci. Eng. 551 (2012) 116-121.   DOI
19 T.S. Byun, T.G. Lach, Mechanical Properties of 304L and 316L Austenitic Stainless Steels after Thermal Aging for 1500 Hours, Pacific Northwest National Laboratory, Richland, 2016.
20 O.K. Chopra, A. Sather, Initial Assessment of the Mechanisms and Significance of Low-Temperature Embrittlement of Cast Stainless Steels in LWR Systems, Argonne National Laboratory, Argonne, 1990.
21 T. S. Byun, D. A. Collins, T. G. Lach and E. L. Carter, "Degradation of impact toughness in cast stainless steels during long-term thermal aging," J. Nucl. Mater., vol. 542, 2020.
22 S.C. Schwarm, S. Mburu, R.P. Kolli, D.E. Perea, S. Ankem, Effects of long-term thermal aging on bulk and local mechanical behavior of ferritic-austenitic duplex stainless steels, Mater. Sci. Eng., A 720 (2018) 130-139.
23 J. Banas, A. Mazurkiewicz, The effect of copper on passivity and corrosion behavior of ferritic and ferritic-austenitic stainless steels, Mater. Sci. Eng. 277 (2000) 183-191.   DOI
24 J.C. Li, M. Zhao, Q. Jiang, Alloy design of FeMnSiCrNi shape-Memory alloys related to stacking-fault energy, Metall. Mater. Trans. 31 (2000) 581-584.   DOI
25 T.G. Lach, T.S. Byun, K.J. Leonard, Mechanical property degradation and microstructural evolution of cast austenitic stainless steels under short-term thermal aging, J. Nucl. Mater. 497 (2017) 139-153.   DOI
26 S. Li, Y. Wang, S. Li, H. Zhang, F. Xue, X. Wang, Microstructures and mechanical properties of cast austenite stainless steels after long-term thermal aging at low temperature, Mater. Des. 50 (2013) 886-892.   DOI
27 S.A. David, J.M. Vitek, D.J. Alexander, Embrittlement of austenitic stainless steel Welds, J. Nondestr. Eval. 15 (3-4) (1996) 129-136.   DOI
28 S.L. Li, Y.L. Wang, H.L. Zhang, S.X. Li, K. Zheng, F. Xue, X.T. Wang, Microstructure evolution and impact fracture behaviors of Z3CN20-09M stainless steels after long-term thermal aging, J. Nucl. Mater. 433 (2013) 41-49.   DOI
29 S. Li, Y. Wang, X. Wang, Effects of Ni content on the microstructures, mechanical properties and thermal aging embrittlement behaviors of Fe-20Cr-xNi alloys, Mater. Sci. Eng., A 639 (2015) 640-646.
30 T.G. Lach, A. Devaraj, K.J. Leonard, T.S. Byun, Co-dependent microstructural evolution pathways in metastable d-ferrite in cast austenitic stainless steels during thermal aging, J. Nucl. Mater. 510 (2018) 382-395.   DOI
31 O.K. Chopra, Effects of thermal aging and neutron irradiation on crack growth rate and fracture toughness of cast stainless steels and austenitic stainless steel Welds, Office of Nuclear Regulatory Research/United States Department of Energy, Washington D.C., 2014.
32 S.L. Li, H.L. Zhang, Y.L. Wang, S.X. Li, K. Zheng, F.W.X.T. Xue, Annealing induced recovery of long-term thermal aging embrittlement in a duplex stainless steel, Mater. Sci. Eng., A 564 (2013) 85-91.
33 J.T. Busby, P.G. Oberson, C.E. Carpenter, M. Srinivasan, Expanded materials degradation assessment (EMDA)-Vol. 2: aging of core internals and piping systems, Office of Nuclear Regulatory Research/United States Department of Energy, Washington D.C., 2014.
34 K. Mumtaz, S. Takahashi, J. Echigoya, L. Zhang, Y. Kamada, M. Sato, Temperature dependence of martensitic transformation in austenitic stainless steel, J. Mater. Sci. Lett. 22 (2003) 423-427.   DOI
35 K. Chandra, R. Singhal, V. Kain, V.S. Raja, Low temperature embrittlement of duplex stainless steel: correlation between mechanical and electrochemical behavior, Mater. Sci. Eng. 527 (2010) 3904-3912.   DOI
36 M. Wang, L. Chen, X. Liu, X. Ma, Influence of thermal aging on the SCC susceptibility of wrought 316LN stainless steel in a high temperature water environment, Corrosion Sci. 81 (2014) 117-124.   DOI
37 A. E1820, Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, 2008.
38 R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, fourth ed., John Wiley & Sons, Inc., Hoboken, 1996.
39 T.S. Byun, Y. Yang, N.R. Overman, J.T. Busby, Thermal aging phenomena in cast duplex stainless steels, JOM 68 (2) (2016) 507-516.   DOI
40 C.Y. Kung, J.J. Rayment, An examination of the validity of existing empirical formulae for the calculation of Ms temperature, Metallurgical Transactions A 13A (1982) 328-331.
41 Z.-X. Wang, F. Xue, J.-W. Jiang, W.-X. Ti, W.-W. Yu, Experimental evaluation of temper aging embrittlement of cast austenitic stainless steel from PWR, Eng. Fail. Anal. 18 (2011) 403-410.   DOI
42 T. Yamada, S. Okano, H. Kuwano, Mechanical property and microstructural change by thermal aging of SCS14A cast duplex stainless steel, J. Nucl. Mater. 350 (2006) 47-55.   DOI
43 T.S. Byun, S.A. Maloy, J.H. Yoon, Small specimen reuse technique to evaluate fracture toughness of high dose HT9 steel, Small Specimen Test Techniques 6 (2014) 1-22.
44 S.S.M. Tavares, J.M. Pardal, M.J. Gomes da Silva, H.F.G. Abreu, M.R. da Silva, Deformation induced martensitic transformation in a 201 modified austenitic stainless steel, Mater. Char. 60 (2009) 907-911.   DOI
45 V. Seetharaman, R. Krishnan, Influence of the martensitic transformation on the deformation behavior of an AISI 316 stainless steel at low temperatures, J. Mater. Sci. 16 (1981) 523-530.   DOI
46 J.M. Vitek, S.A. David, D.J. Alexander, J.R. Keiser, Low temperature aging behavior of type 308 stainless steel weld metal, Acta Metall. Mater. 39 (4) (1991) 503-516.   DOI
47 L. Mraz, F. Matsuda, Y. Kikuchi, N. Sakamoto, S. Kawaguchi, Temper embrittlement of cast duplex stainless steels after long-term aging, Trans. JWRI 23 (2) (1994) 213-222.
48 S. Li, Y. Wang, X. Wang, Effects of ferrite content on the mechanical properties of thermal aged duplex stainless steels, Mater. Sci. Eng., A 625 (2015) 186-193.
49 Q.X. Dai, X.N. Cheng, Y.T. Zhao, X.M. Luo, Z.Z. Yuan, Design of martensite transformation temperature by calculation for austentitic steels, Mater. Char. 52 (2004) 349-354.   DOI
50 S.S.M. Tavares, M.R. da Silva, J.M. Pardal, H.F.G. Abreu, A.M. Gomes, Microstructural changes produced by plastic deformation in the UNS S31803 duplex stainless steel, J. Mater. Process. Technol. 180 (2006) 318-322.   DOI
51 P.L. Manganon, G. Thomas, The martensite phases in 304 stainless steel, Metallurgical Transactions 1 (1970) 1577-1586.   DOI
52 P.J. Brofman, G.S. Ansell, On the effect of carbon on the stacking fault energy of austenitic stainless steels, Metallurgical Transactions A 9A (1978) 879-880.
53 C.I. Grimes, Staff Evaluation of License Renewal No. 98-0030: Thermal Aging Embrittlement of Cast Austenitic Stainless Steel Components, Nuclear Energy Institute, Washinton D. C., 2000.
54 S. Mburu, R.P. Kolli, D.E. Perea, S.C. Schwarm, A. Eaton, J. Liu, S. Patel, J. Bartrand, S. Ankem, Effect of aging temperature on phase decomposition and mechanical properties in cast duplex stainless steels, Mater. Sci. Eng., A 690 (2017) 365-377.
55 V. Gavriljuk, Y. Petrov, B. Shanina, Effect of nitrogen on the electron structure and stacking fault energy in austenitic steels, Scripta Mater. 55 (2006) 537-540.   DOI
56 S. Ganesh Sundara Raman, K.A. Padmanabhan, Tensile deformation-induced martensitic transformation in AISI 304LN austenitic stainless steel, J. Mater. Sci. Lett. 13 (1994) 389-392.   DOI
57 T. Sourmail, Precipitation in creep resistant austenitic stainless steels, Mater. Sci. Technol. 17 (2001) 1-14.   DOI