• Title/Summary/Keyword: cascode amplifier

Search Result 107, Processing Time 0.027 seconds

A 900MHz CMOS RF Power Amplifier with Digitally Controllable Output Power (Digital 방식으로 출력 전력을 조절할 수 있는 900MHz CMOS RF 전력 증폭기)

  • 윤진한;박수양;손상희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.162-170
    • /
    • 2004
  • A 900MHz CMOS RF power amplifier with digitally controllable output power has been proposed and designed with 0.6${\mu}{\textrm}{m}$ standard CMOS technology. The designed power amplifier was composed of digitally controllable switch mode pre-amplifiers with an integrated 4nH spiral inductor load and class-C output stage. Especially, to compensate the 1ow Q of integrated spiral inductor, cascode amplifier with a Q-enhancement circuit is used. It has been shown that the proposed power control technique allows the output power to change from almost 3dBm to 13.5dBm. And it has a maximum PAE(Power Added Efficiency) of almost 55% at 900MHz operating frequency and 3V power supply voltage.

A SiGe HBT Variable Gain Driver Amplifier for 5-GHz Applications

  • Chae Kyu-Sung;Kim Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.356-359
    • /
    • 2006
  • A monolithic SiGe HBT variable gain driver amplifier(VGDA) with high dB-linear gain control and high linearity has been developed as a driver amplifier with ground-shielded microstrip lines for 5-GHz transmitters. The VGDA consists of three blocks such as the cascode gain-control stage, fixed-gain output stage, and voltage control block. The circuit elements were optimized by using the Agilent Technologies' ADSs. The VGDA was implemented in STMicroelectronics' 0.35${\mu}m$ Si-BiCMOS process. The VGDA exhibits a dynamic gain control range of 34 dB with the control voltage range from 0 to 2.3 V in 5.15-5.35 GHz band. At 5.15 GHz, maximum gain and attenuation are 10.5 dB and -23.6 dB, respectively. The amplifier also produces a 1-dB gain-compression output power of -3 dBm and output third-order intercept point of 7.5 dBm. Input/output voltage standing wave ratios of the VGDA keep low and constant despite change in the gain-control voltage.

A 900 MHz RF CMOS LNA using Q-enhancement cascode input stage (Q-증가형 캐스코드 입력단을 이용한 900 MHz RF CMOS 저 잡음 증폭기)

  • 박수양;전동환;송한정;손상희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.183-186
    • /
    • 1999
  • A 900 71Hz RF band-pass amplifier for wireless communication systems is designed and fabricated. HSPICE simulation results show that the amplifier can achieve a tunable center frequency between 880 MHz and 920 MHz. The gain of designed amplifier is 19 dB at Q=88, and the power dissipation is about 61 mW under 3 V power supply by using the spiral inductor with negative-7m circuit and center frequency tunning circuit. The designed band-pass amplifier is implemented by using 0.6 um 2-poly-3-metal standard CMOS process.

  • PDF

Design of a 1-Gb/s CMOS Optical Receiver for POF Applications (1-Gb/s CMOS POF 응용 광수신기 설계)

  • Lee, Jun-hyup;Lee, Soo-young;Jang, Kyu-bok;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.241-244
    • /
    • 2012
  • In this paper, three types of optical receivers are designed using a $0.35-{\mu}m$ standard CMOS technology for plastic optical fiber (POF) applications. Basic common-source transimpedance amplifier (CS-TIA), common-gate TIA (CG-TIA), and regulated-cascode TIA (RGC-TIA) are optimally designed, and their transimpedance gain (TZ gain), 3-dB bandwidth, and noise characteristics are compared and analyzed. As a result of simulations, the RGC-TIA indicates better TZ gain and 3-dB bandwidth than other topologies, and CS-TIA has the best noise performance. Each optical receiver occupies area of $0.35mm^2$.

  • PDF

An Inherently dB-linear All-CMOS Variable Gain Amplifier

  • Kwon, Ji-Wook;Ryu, Seung-Tak
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.336-343
    • /
    • 2011
  • This paper introduces a simple variable gain amplifier (VGA) structure that shows an inherently dB-linear gain control property. Requiring no additional components for dB-linear control, the structure is compact and power efficient. The designed two-stage VGA shows a gain control range of 60dB with the gain error in the range of ${\pm}0.4$ dB. The power consumption including the output buffer is 20.4 mW from 1.2 V supply voltage with bandwidth of 630 MHz. The prototype was fabricated in a 0.13 ${\mu}m$ CMOS process and the VGA core occupies 0.06 $mm^2$.

Design and Analysis of 2 GHz Low Noise Amplifier Layout in 0.13um RF CMOS

  • Lee, Miyoung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • This paper presents analysis of passive metal interconnection of the LNA block in CMOS integrated circuit. The performance of circuit is affected by the geometry of RF signal path. To investigate the effect of interconnection lines, a cascode LNA is designed, and circuit simulations with full-wave electromagnetic (EM) simulations are executed for different positions of a component. As the results, the position of an external capacitor (Cex) changes the parasitic capacitance of electric coupling; the placement of component affects the circuit performance. This analysis of interconnection line is helpful to analyze the amount of electromagnetic coupling between the lines, and useful to choose the signal path in the layout design. The target of this work is the RF LNA enabling the seamless connection of wireless data network and the following standards have to be supported in multi-band (WCDMA: 2.11~ 2.17 GHz, CDMA200 1x : 1.84~1.87 GHz, WiBro : 2.3~2.4GHz) mobile application. This work has been simulated and verified by Cadence spectre RF tool and Ansoft HFSS. And also, this work has been implemented in a 0.13um RF CMOS technology process.

Design of a Two-stage Differential cascode Power Amplifier with a Temperature Compensation function of High PAE with 2.4 GHz (2.4GHz 대역폭을 갖는 온도 보상 기능 탑재 고전력부가효율의 2 단 차동 캐스코드 전력증폭기 설계 )

  • Joon Hyung Park;Jisung Jang;Howon Kim;Kang-Yoon Lee
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.3
    • /
    • pp.6-12
    • /
    • 2024
  • This paper presents a study on a 2.4GHz differential cascode power amplifier(PA) fabricated using a 130nm CMOS process. This PA is designed for wireless power transmission applications and consists of two differential stages with custom-designed balun transformers for single-ended output. Balun transformers are utilized not only for the output stage but also for power match-ing between each stage. Additionally, a bias circuit with temperature compensation capability is added to maintain stable bias voltage in the 2.4GHz frequency band. As a result, it achieves an output power of 21.75 dBm with a power-added efficiency(PAE) of 40.9% at TT/40℃.

Design of a 2.4GHz CMOS Low Noise Amplifier (2.4GHz CMOS 저잡음 증폭기)

  • 최혁환;오현숙;김성우;임채성;권태하
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.1
    • /
    • pp.106-113
    • /
    • 2003
  • In this paper, we proposed low noise amplifier for 2.4GHz ISM frequency with CMOS technology. The property of noise and gain is improved by cascode architecture. The architecture, which common source output of cascode is connected to input of parallel MOS, reduce IM. The LNA results based on Hynix 0.35${\mu}{\textrm}{m}$ 2poly 4metal CMOS processor with a 3.3V supply. It achieves a gain of 13dB, noise figure of 1.7dB, IP3 of 8dBm, Input/output matching of -31dB/-28dB, reverse isolation of -25dB. and power dissipation of 4.7mW with HSPICE simulation. The size of layout is smaller than 2 ${\times}$ 2mm with Mentor.

Analog Performance Analysis of Self-cascode Structure with Native-Vth MOSFETs (Native-Vth MOSFET을 이용한 셀프-캐스코드 구조의 아날로그 성능 분석)

  • Lee, Dae-Hwan;Baek, Ki-Ju;Ha, Ji-Hoon;Na, Kee-Yeol;Kim, Yeong-Seuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.575-581
    • /
    • 2013
  • The self-cascode (SC) structure has low output voltage swing and high output resistance. In order to implement a simple and better SC structure, the native-$V_{th}$ MOSFETs which has low threshold voltage($V_{th}$) is applied. The proposed SC structure is designed using a qualified industry standard $0.18-{\mu}m$ CMOS technology. Measurement results show that the proposed SC structure has higher transconductance as well as output resistance than single MOSFET. In addition, analog building blocks (e.g. current mirror, basic amplifier circuits) with the proposed SC structure are investigated using by Cadence Spectre simulator. Simulation results show improved electrical performances.

Wideband Resistive LNA based on Noise-Cancellation Technique Achieving Minimum NF of 1.6 dB for 40MHz (40MHz에서 1.6 dB 최소잡음지수를 얻는 잡음소거 기술에 근거한 광대역 저항성 LNA)

  • Choi Goangseog
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.2
    • /
    • pp.63-74
    • /
    • 2024
  • This Paper presents a resistive wideband fully differential low-noise amplifier (LNA) designed using a noise-cancellation technique for TV tuner applications. The front-end of the LNA employs a cascode common-gate (CG) configuration, and cross-coupled local feedback is employed between the CG and common-source (CS) stages. The moderate gain at the source of the cascode transistor in the CS stage is utilized to boost the transconductance of the cascode CG stage. This produces higher gain and lower noise figure (NF) than a conventional LNA with inductor. The NF can be further optimized by adjusting the local open-loop gain, thereby distributing the power consumption among the transistors and resistors. Finally, an optimized DC gain is obtained by designing the output resistive network. The proposed LNA, designed in SK Hynix 180 nm CMOS, exhibits improved linearity with a voltage gain of 10.7 dB, and minimum NF of 1.6-1.9 dB over a signal bandwidth of 40 MHz to 1 GHz.