• Title/Summary/Keyword: carry-select

Search Result 96, Processing Time 0.038 seconds

A 32-bit Pipelined Carry-select Adder Using the Complementary Scheme (보수 이론을 이용한 32비트 파이프라인 캐리 선택 가산기)

  • Kim, Young-Joon;Kim, Lee-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.9
    • /
    • pp.55-61
    • /
    • 2002
  • Using the carry-select adder scheme, an adder with small number of stages can be operated as fast as an adder with large number of stages. In this paper, a 4-block 5-stage 32-bit pipelined carry-select adder is designed and implemented. The proposed adder operates as fast as a conventional 16-stage 32-bit pipelined adder while the number of registers required is nearly same as a conventional 4-stage pipelined adder. This adder is operated at 1.67GHz clock frequency in a standard 0.25um CMOS technology with 2.5 V supply voltage.

On the design of 64bit CLSA adder using the optimized algorithm (최적 알고리즘을 이용한 64비트 CLSA 가산기 설계)

  • 이영훈;김상수
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.3
    • /
    • pp.47-52
    • /
    • 1999
  • The efficiency of an adder which plays an important role in micro-process and DSP greatly depends on the kinds of carry generation method. So in this paper. I used both CLA excellent in the speed and CSA best in the chip-size. The 64bit adder is designed with high speed which is two optimum combination. Therefore this paper suggested the way of CLSA improving both speed and chip-size. and proved the excellence of the designed circuit.

A Study on the Design of Parallel Multiplier Array for the Multiplication Speed Up (승산시간 향상을 위한 병렬 승산기 어레이 설계에 관한 연구)

  • Lee, Gang-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.6
    • /
    • pp.969-973
    • /
    • 1995
  • In this paper, a new parallel Multiplier array is proposed to reduce the multiplication time by modifying CAS(carry select adder) cell structure used in the conventional parallel multiplier array. It is named MCSA(modified CSA) that assignes the addend and augend to the inputs of CSA faster than Ci(carry input). Also the designed DCSA (doubled inverted input CSA) is appended after the last product term for the carry propagation adder. The proposed scheme is designed with MCSA and DCSA, and simulated. It is verified that the circuit size is increased about 13% compared with the conventional multiplier array with CSA cell but the operation time is reduced about 52%.

  • PDF

A Design of HAS-160 Processor for Smartcard Application (스마트카드용 HAS-160 프로세서 설계)

  • Kim, Hae-ju;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.913-916
    • /
    • 2009
  • This paper describes a hardware design of hash processor which implements HAS-160 algorithm adopted as a Korean standard. To achieve a high-speed operation with small-area, the arithmetic operation is implemented using a hybrid structure of 5:3 and 3:2 carry-save adders and a carry-select adder. The HAS-160 processor synthesized with $0.35-{\mu}m$ CMOS cell library has 17,600 gates. It computes a 160-bit hash code from a message block of 512 bits in 82 clock cycles, and has 312 Mbps throughput at 50 MHz@3.3-V clock frequency.

  • PDF

A Small-Area Hardware Implementation of Hash Algorithm Standard HAS-160 (해쉬 알고리듬 표준 HAS-l60의 저면적 하드웨어 구현)

  • Kim, Hae-Ju;Jeon, Heung-Woo;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.715-722
    • /
    • 2010
  • This paper describes a hardware design of hash function processor which implements Korean Hash Algorithm Standard HAS-160. The HAS-160 processor compresses a message with arbitrary lengths into a hash code with a fixed length of 160-bit. To achieve high-speed operation with small-area, arithmetic operation for step-operation is implemented by using a hybrid structure of 5:3 and 3:2 carry-save adders and carry-select adder. It computes a 160-bit hash code from a message block of 512 bits in 82 clock cycles, and has 312 Mbps throughput at 50 MHz@3.3-V clock frequency. The designed HAS-160 processor is verified by FPGA implementation, and it has 17,600 gates on a layout area of about $1\;mm^2$ using a 0.35-${\mu}m$ CMOS cell library.

A study on the VMD elements of fashion select shop interior displays (패션 셀렉트샵 인테리어 디스플레이의 VMD 구성요소에 관한 연구)

  • Choi, Jihoon;Kim, Mihyun
    • The Research Journal of the Costume Culture
    • /
    • v.25 no.2
    • /
    • pp.206-223
    • /
    • 2017
  • This study examines the role of visual merchandising (VMD) in creating effective interior displays for fashion "select shops"(shops that carry a wide selection of brands) amid the recent changes in consumption trends, with consumer needs becoming increasingly individualized and diversified. Fashion select shop interior displays can be categorized as self-service, showcase, counter, and environmental display spaces. Regarding the VMD elements that contribute to effective interior displays, we reached the following conclusions. First, in self-service displays, in order to heighten sales efficacy, display elements should be presented in such a way as to enable customers to select products with ease by themselves. Second, the mere presence of showcase displays was found to be insufficient; if, however, select shops use showcase displays to arrange products according to the flow of customer traffic, enabling the creation of a gentrified atmosphere for products, this may contribute to a differentiated image of brands, heightening perceived product value. Third, in counter displays, having a harmonious arrangement of display and presentation elements promotes sales by inspiring customer confidence. Fourth, regarding environmental displays, it is important for stores to have attractive interior designs and decorations in order to reproduce settings in which products are actually used, as this can inspire interest in products and promote customers' purchasing intention.

Design of a High Performance 32$\times$32-bit Multiplier Based on Novel Compound Mode Logic and Sign Select Booth Encoder (새로운 복합모드로직과 사인선택 Booth 인코더를 이용한 고성능 32$\times$32-bit 곱셈기의 설계)

  • Kim, Jin-Hwa;Song, Min-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.205-210
    • /
    • 2001
  • In this paper, a novel compound mode logic based on the advantage of both CMOS logic and pass-transistor logic(PTL) is proposed. From the experimental results, the power-delay products of the compound mode logic is about 22% lower than that of the conventional CMOS logic, when we design a full adder. With the proposed logic, a high performance 32$\times$32-bit multiplier has been fabricated with 0.6um CMOS technology. It is composed of an improved sign select Booth encoder, an efficient data compressor based on the compound mode logic, and a 64-bit conditional sum adder with separated carry generation block. The Proposed 32$\times$32-bit multiplier is composed of 28,732 transistors with an active area of 1.59$\times$1.68 mm2 except for the testing circuits. From the measured results, the multiplication time of the 32$\times$32-bit multiplier is 9.8㎱ at a 3.3V power supply, and it consumes about 186㎽ at 100MHz.

  • PDF

Design of High Speed Modular Multiplication Using Hybrid Adder (Hybrid 가산기를 이용한 고속 모듈러 곱셈기의 설계)

  • Lee, Jae-Chul;Lim, Kwon-Mook;Kang, Min-Sup
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10a
    • /
    • pp.849-852
    • /
    • 2000
  • 본 논문에서는 RSA 암호 시스템의 Montgomery 모듈러 곱셈 알고리듬을 개선한 고속 모듈러 곱셈 알고리듬을 제안하고, Hybrid 구조의 가산기를 사용한 고속 모듈러 곱셈 알고리듬의 설계에 관하여 기술한다. 기존 Montgomery 알고리듬에서는 부분합계산시 2번의 덧셈연산이 요구되지만 제안된 방법에서는 단지 1번의 덧셈 연산으로 부분 합을 계산할 수 있다. 또한 덧셈 연산 속도를 향상시키기 위하여 Hybrid 구조의 가산기를 제안한다. Hybrid 가산기는 기존의 CLA(Carry Look-ahad Adder)와 CSA(Carry Select Adder)알고리듬을 혼합한 구조를 기본으로 하고 있다. 제안된 고속 모듈러 곰셈기는 VHDL(VHSIC Hardware Description Language)을 이용하여 모델링하였고, $Synopsys^{TM}$사의 Design Analyzer를 이용하여 논리합성(Altera 10K lib. 이용)을 수행하였다. 성능 분석을 위하여 Altera MAX+ PLUS II 상에서 타이밍 시뮬레이션을 수행하였고, 실험을 통하여 제안한 방법의 효율성을 입증하였다.

  • PDF

Reliability Assessment and Improvement of MEMS Vacuum Package with Accelerated Degradation Test (ADT) (가속열화시험을 적용한 MEMS 진공패키지의 신뢰성 분석 및 개선)

  • 최민석;김운배;정병길;좌성훈;송기무
    • Journal of Applied Reliability
    • /
    • v.3 no.2
    • /
    • pp.103-116
    • /
    • 2003
  • We carry out reliability tests and investigate the failure mechanisms. of the wafer level vacuum packaged MEMS gyroscope sensor using an accelerated degradation test. The accelerated degradation test (ADT) is used to evaluate reliability (and/or life) of the MEMS vacuum package and to select the accelerated test conditions, which reduce the reliability testing time. Using the failure distribution model and stress-life model, we are able to estimate the average life time of the vacuum package, which is well agreed with the measured data. After improving several package reliability issues such as prevention of gas diffusion through package, we carry out another set of accelerated tests at the chosen acceleration level. The results show that reliability of the vacuum packaged gyroscope has been greatly improved and can survive without degradation of performance, which is the Q-factor in gyroscope sensor, during environmental stress reliability tests.

  • PDF

Design of a high performance 32*32-bit multiplier based on novel compound mode logic and sign select booth encoder (새로운 복합 모드 로직과 사인 선택 Booth 인코더를 이용한 고성능 32*32-bit 곱셈기의 설계)

  • Song, Min Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.51-51
    • /
    • 2001
  • 본 논문에서는 CMOS 로직과 pass-transistor logic(PTL)의 장점만을 가진 새로운 복합모드로직(Compound Mode Logic)을 제안하였다. 제안된 로직은 VLSI설계에서 중요하게 부각되고 있는 저전력, 고속 동작이 가능하며 실제로 전가산기를 설계하여 측정 한 결과 복합모드 로직의 power-delay 곱은 일반적인 CMOS로직에 비해 약 22% 개선되었다 제안한 복합모드 로직을 이용하여 고성능 32×32-bit 곱셈기를 설계 제작하였다. 본 논문의 곱셈기는 개선된 사인선택(Sign Select) Booth 인코더, 4-2 및 9-2 압축기로 구성된 데이터 압축 블록, 그리고 carry 생성 블록을 분리한 64-bit 조건 합 가산기로 구성되어 있다. 0.6um 1-poly 3-metal CMOS 공정을 이용하여 제작된 32×32-bit 곱셈기는 28,732개의 트랜지스터와 1.59×l.68 ㎜2의 면적을 가졌다. 측정 결과 32×32-bit 곱셈기의 곱셈시간은 9.8㎱ 이었으며, 3.3V 전원 전압에서 186㎽의 전력 소모를 하였다.