• Title/Summary/Keyword: carrier trapping

Search Result 56, Processing Time 0.027 seconds

The Effect of Annealing Methods on Dopant Activation and Damage Recovery of Phosphorous ion Shower Doped Poly-Si (다결정 실리콘 박막 위에 P이온 샤워 도핑 후 열처리 방법에 따르는 도펀트 활성화 및 결함 회복에 관한 효과)

  • Kim, Dong-Min;Ro, Jae-Sang;Lee, Ki-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.24-31
    • /
    • 2005
  • Ion shower doping with a main ion source of $P_2H_x$ using a source gas mixture of $PH_3/H_2$ was conducted on excimer-laser-annealed (ELA) poly-Si.The crystallinity of the as-implanted samples was measured using a UV-transmittance. The measured value using UV-transmittance was found to correlate well with the one measured using Raman Spectroscopy. The sheet resistance decreases as the acceleration voltage increases from 1kV to 15kV at the moderate doping conditions. It, however, increases as the acceleration voltage increases under the severe doping conditions. The reduction in carrier concentration due to electron trapping at uncured damage after activation annealing seems to be responsible for the rise in sheet resistance. Three different annealing methods were investigated in terms of dopant-activation and damage-recovery, such as furnace annealing, excimer laser annealing, and rapid thermal annealing, respectively.

Electroluminescent Properties of White Light-Emitting Device Using Photoconductive Polymer and Anthracene Derivatives (광전도성 고분자와 안트라센 유도체를 이용한 백색 전계발광소자의 발광 특성)

  • Lee Jeong-Hwan;Choi Hee-Lack;Lee Bong
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.543-547
    • /
    • 2005
  • Organic electroluminescence devices were made from 1,4-bis-(9-anthrylvinyl)benzene (AVB) and 1,4-bis-(9-aminoanthryl)benzene (AAB) anthracene derivatives. Device structure was ITO/AVB/PANI(EB)/Al (multi-layer device) and ITO/AAB:DCM/Al(single-layer device). In these devices, AVB, polyaniline(emeraldine base) (PANI(EB)) and AAB were used as the emitting material. 4-(dicyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H -pyran(DCM) was used as red fluorescent dopant. We studied change of fluorescence wavelength with concentration of DCM doped in AAB. The ionization potential (IP) and optical band gap (Eg) were measured by cyclic voltammetry and UV-visible spectrum. We compared with difference of emitting wavelength between photoluminescence and electroluminescence spectrum. In case of the multi-layer device, PANI and AVB EL spectra have similar wave pattern to each PL spectrum and when PAM and AVB were used at the same time, and multi-layer device showed that a balanced recombination and radiation kom PANI and AVB. In case of the single-layer device, with the increase of DCM concentration, the blue emission decreases and red emission increases. This indicates that DCM was excited by the energy transfer from AAB to DCM or the direct recombination at the dopant sites due to carrier trapping, or both. The device with $1.0wt\%$ DCM concentration gave white light.

Effects of thin-film thickness on device instability of amorphous InGaZnO junctionless transistors (박막의 두께가 비정질 InGaZnO 무접합 트랜지스터의 소자 불안정성에 미치는 영향)

  • Jeon, Jong Seok;Jo, Seong Ho;Choi, Hye Ji;Park, Jong Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1627-1634
    • /
    • 2017
  • In this work, a junctionless transistor with different film thickness of amorphous InGaZnO has been fabricated and it's instability has been analyzed with different film thickness under positive and negative gate stress as well as light illumination. It was found that the threshold voltage shift and the variation of drain current have been increased with decrease of film thickness under the condition of gate stress and light illumination. The reasons for the observed results have been explained by stretched-exponential model and device simulation. Due to the reduced carrier trapping time with decrease of film thickness, electrons and holes can be activated easily. Due to the increase of vertical channel electric field reaching the back interface with decrease of film thickness, more electrons and holes can be accumulated in back interface. When one decides the film thickness for the fabrication of junctionless transistor, the more significant device instability with decrease of film thickness should be consdered.

Synthesis of Ag-doped black ZnO nano-catalysts for the utilization of visible-light (가시광선 활용을 위한 Ag 도핑 흑색 ZnO 나노 광촉매 합성)

  • Ui-Jun Kim;Hye-Min Kim;Seung-Hyo Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.3
    • /
    • pp.208-218
    • /
    • 2023
  • Photocatalysts are advanced materials which accelerate the photoreaction by providing ordinary reactions with other pathways. The catalysts have various advantages, such as low-cost, low operating temperature and pressure, and long-term use. They are applied to environmental and energy field, including the air and water purification, water splitting for hydrogen production, sterilization and self-cleaning surfaces. However, commercial photocatalysts only absorb ultraviolet light between 100 and 400 nm of wavelength which comprises only 5% in sunlight due to the wide band gap. In addition, rapid recombination of electron-hole pairs reduces the photocatalytic performance. Recently, studies on blackening photocatalysts by laser, thermal, and plasma treatments have been conducted to enhance the absorption of visible light and photocatalytic activity. The disordered structures could yield mid-gap states and vacancies could cause charge carrier trapping. Herein, liquid phase plasma (LPP) is adopted to synthesize Ag-doped black ZnO for the utilization of visible-light. The physical and chemical characteristics of the synthesized photocatalysts are analyzed by SEM/EDS, XRD, XPS and the optical properties of them are investigated using UV/Vis DRS and PL analyses. Lastly, the photocatalytic activity was evaluated using methylene blue as a pollutant.

Mixed-mode simulation of transient characteristics of 4H-SiC DMOSFETs - Impact off the interface changes (Mixde-mode simulation을 이용한 4H-SiC DMOSFETs의 계면상태에서 포획된 전하에 따른 transient 특성 분석)

  • Kang, Min-Seok;Choe, Chang-Yong;Bang, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.55-55
    • /
    • 2009
  • Silicon Carbide (SiC) is a material with a wide bandgap (3.26eV), a high critical electric field (~2.3MV/cm), a and a high bulk electron mobility (${\sim}900cm^2/Vs$). These electronic properties allow high breakdown voltage, high frequency, and high temperature operation compared to Silicon devices. Although various SiC DMOSFET structures have been reported so far for optimizing performances. the effect of channel dimension on the switching performance of SiC DMOSFETs has not been extensively examined. In this paper, we report the effect of the interface states ($Q_s$) on the transient characteristics of SiC DMOSFETs. The key design parameters for SiC DMOSFETs have been optimized and a physics-based two-dimensional (2-D) mixed device and circuit simulator by Silvaco Inc. has been used to understand the relationship with the switching characteristics. To investigate transient characteristic of the device, mixed-mode simulation has been performed, where the solution of the basic transport equations for the 2-D device structures is directly embedded into the solution procedure for the circuit equations. The result is a low-loss transient characteristic at low $Q_s$. Based on the simulation results, the DMOSFETs exhibit the turn-on time of 10ns at short channel and 9ns at without the interface charges. By reducing $SiO_2/SiC$ interface charge, power losses and switching time also decreases, primarily due to the lowered channel mobilities. As high density interface states can result in increased carrier trapping, or recombination centers or scattering sites. Therefore, the quality of $SiO_2/SiC$ interfaces is important for both static and transient properties of SiC MOSFET devices.

  • PDF

Excimer-Based White Phosphorescent OLEDs with High Efficiency

  • Yang, Xiaohui;Wang, Zixing;Madakuni, Sijesh;Li, Jian;Jabbour, Ghassan E.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1520-1521
    • /
    • 2008
  • There are several ways to demonstrate white organic light emitting diodes (OLEDs) for displays and solid state lighting applications. Among these approaches are the stacked three primary or two complementary colors light-emitting layers, multiple-doped emissive layer, and excimer and exciplex emission [1-10]. We report on white phosphorescent excimer devices by using two light emitting materials based on platinum complexes. These devices showed a peak EQE of 15.7%, with an EQE of 14.5% (17 lm/W) at $500\;cd/m^2$, and a noticeable improvement in both the CIE coordinates (0.381, 0.401) and CRI (81). Devices with the structure ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy: 12% FPt (10 nm) /26 mCPy: 2% Pt-4 (15 nm)/BCP (40 nm)/CsF/Al [device 1], ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy: 2% Pt-4 (15 nm)/26 mCPy: 12% FPt (10 nm)/BCP (40 nm)/CsF/Al [device 2], and ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy: 2% Pt-4: 12% FPt (25 nm)/BCP (40 nm)/CsF/Al [device 3] were fabricated. In these cases, the emissive layer was either the double-layer of 26 mCPy:12% FPt and 15 nm 26 mCPy: 2% Pt-4, or the single layer of 26mCPy with simultaneous doping of Pt-4 and FPt. Device characterization indicates that the CIE coordinates/CRI of device 2 were (0.341, 0.394)/75, (0.295, 0.365)/70 at 5 V and 7 V, respectively. Significant change in EL spectra with the drive voltage was observed for device 2 indicating a shift in the carrier recombination zone, while relatively stable EL spectra was observed for device 1. This indicates a better charge trapping in Pt-4 doped layers [10]. On the other hand, device 3 having a single light-emitting layer (doped simultaneously) emitted a board spectrum combining emission from the Pt-4 monomer and FPt excimer. Moreover, excellent color stability independent of the drive voltage was observed in this case. The CIE coordinates/CRI at 4 V ($40\;cd/m^2$) and 7 V ($7100\;cd/m^2$) were (0.441, 0.421)/83 and (0.440, 0.427)/81, respectively. A balance in the EL spectra can be further obtained by lowering the doping ratio of FPt. In this regard, devices with FPt concentration of 8% (denoted as device 4) were fabricated and characterized. A shift in the CIE coordinates of device 4 from (0.441, 0.421) to (0.382, 0.401) was observed due to an increase in the emission intensity ratio of Pt-4 monomer to FPt excimer. It is worth noting that the CRI values remained above 80 for such device structure. Moreover, a noticeable stability in the EL spectra with respect to changing bias voltage was measured indicating a uniform region for exciton formation. A summary of device characteristics for all cases discussed above is shown in table 1. The forward light output in each case is approximately $500\;cd/m^2$. Other parameters listed are driving voltage (Bias), current density (J), external quantum efficiency (EQE), power efficiency (P.E.), luminous efficiency (cd/A), and CIE coordinates. To conclude, a highly efficient white phosphorescent excimer-based OLEDs made with two light-emitting platinum complexes and having a simple structure showed improved EL characteristics and color properties. The EQE of these devices at $500\;cd/m^2$ is 14.5% with a corresponding power efficiency of 17 lm/W, CIE coordinates of (0.382, 0.401), and CRI of 81.

  • PDF