Browse > Article
http://dx.doi.org/10.3740/MRSK.2005.15.8.543

Electroluminescent Properties of White Light-Emitting Device Using Photoconductive Polymer and Anthracene Derivatives  

Lee Jeong-Hwan (Department of Polymer Engineering, Pukyong National University)
Choi Hee-Lack (Department of Materials Science and Engineering, Pukyong National University)
Lee Bong (Department of Polymer Engineering, Pukyong National University)
Publication Information
Korean Journal of Materials Research / v.15, no.8, 2005 , pp. 543-547 More about this Journal
Abstract
Organic electroluminescence devices were made from 1,4-bis-(9-anthrylvinyl)benzene (AVB) and 1,4-bis-(9-aminoanthryl)benzene (AAB) anthracene derivatives. Device structure was ITO/AVB/PANI(EB)/Al (multi-layer device) and ITO/AAB:DCM/Al(single-layer device). In these devices, AVB, polyaniline(emeraldine base) (PANI(EB)) and AAB were used as the emitting material. 4-(dicyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H -pyran(DCM) was used as red fluorescent dopant. We studied change of fluorescence wavelength with concentration of DCM doped in AAB. The ionization potential (IP) and optical band gap (Eg) were measured by cyclic voltammetry and UV-visible spectrum. We compared with difference of emitting wavelength between photoluminescence and electroluminescence spectrum. In case of the multi-layer device, PANI and AVB EL spectra have similar wave pattern to each PL spectrum and when PAM and AVB were used at the same time, and multi-layer device showed that a balanced recombination and radiation kom PANI and AVB. In case of the single-layer device, with the increase of DCM concentration, the blue emission decreases and red emission increases. This indicates that DCM was excited by the energy transfer from AAB to DCM or the direct recombination at the dopant sites due to carrier trapping, or both. The device with $1.0wt\%$ DCM concentration gave white light.
Keywords
white OLED; polyaniline; anthracene; energy transfer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. -J. Jun, C. -B, Yoon, H. -K. Shim, L. -M. Do and T. Zyung, Adv. Funct. Mater., 11, 430 (2001)   DOI   ScienceOn
2 Y. S. Park, H. L. Choi and B. Lee, Kor. J Imaging Sci. and Tech., 10(4), 32 (2004)
3 M. Kawamoto, H. Mochizuki, A. Shishido, O. Tsutsumi, T. Ikeda, B. Lee and Y. Shirota, J. Phys. Chem. B., 107, 4887 (2003)   DOI   ScienceOn
4 M. Kawamoto, H. Mochizuki, T. Ikeda, B. Lee and Y. Shirota, J. Appl. Phys., 94, 6442 (2003)   DOI   ScienceOn
5 P. E. Burrows, S. R. Forrest, S. P. Sibley and M. E. Thompson, Appl. Phys. Lett., 69, 2959 (1996)   DOI   ScienceOn
6 Y. Hamada, IEEE Trans. Eletron Devices., 44, 1209 (1997)
7 C. H. Chen, J. Shi and C. W. Tang, Macromol. Symp., 125, 1 (1997)
8 Z. Y. Xie, L. S. Hung and S. T. Lee, Appl. Phys. Lett., 79, 1048 (2001)   DOI   ScienceOn
9 X. H. Zhang, B. J. Chen, X. Q. Lin, O. Y. Wong, C. S. Lee, H. L. Kwong, S. T. Lee and S. K. Wu, Chem. Mater., 13, 1565 (2001)   DOI   ScienceOn
10 M. G. Roc, J. M. Ginder, P. E. Wigen, A. J. Epstein, M. Angelopoulos and A. G. MacDiarmid, Phys. Rev. Lett, 6, 789 (1988)
11 R. H. Friend, D. D. C. Bradley and P. D. Townsend, J. Phys., D20, 1367 (1987)
12 D. D. C.Bradley and R. H. Friend, J. Phys. Condensed Matter, 1, 3671 (1989)   DOI   ScienceOn
13 Kido, J. Recent Advance in organic Electroluminescence Device. Bulletin of Electrochemistry, 10, 1 (1994)
14 Tang. C. W, VanSlyke, S. A. and Chen, C. H. Electroluminescent of doped organic thin films. J. Appl. Phys, 65, 3610 (1989)   DOI
15 S. Romdlhane, F. Marai, L. Hassine, J. L. Fave, J. Roussel, M. Majdoub and H. Bouchriha, Synth. Met, 139, 245 (2003)   DOI   ScienceOn
16 Tang, C. W. and VanSlyke and S. A. Organic electroluminescent diodes. Appl. Phys. Lett., 51, 913 (1987)   DOI