• Title/Summary/Keyword: carrier lifetime

Search Result 213, Processing Time 0.026 seconds

Surface Passivation and Heterojunction Solar Cell Characteristics Depending on p a-Si:H/c-Si Deposition (P a-Si:H 증착조건에 따른 실리콘 기판 계면특성 및 a-Si:H/c-Si 이종접합 태양전지 동작특성 분석)

  • Jeong, Dae-Young;Kim, Chan-Seok;Song, Jun-Yong;Park, Sang-Hyun;Cho, Jun-Sik;Yoon, Kyoung-Hoon;Song, Jin-Soo;Wang, Jin-Suk;Yi, Jun-Sin;Lee, Jeong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.28-30
    • /
    • 2009
  • 이종접합태양전지에서 p a-Si:H/c-Si의 p a-Si:H의 증착 조건인 $H_2/SiH_4$ 비율, $B_2H_6$의 농도를 변화 시키며 실험하여 이 따라 계면 특성 변화를 연구하였다. pa-Si:H의 $H_2/SiH_4$ 비율이 상승할수록 carrier lifetime이 증가하다 다시 감소하는 경향을 나타내었다. 이는 $H_2/SiH_4$의 비율 중 효과적으로 웨이퍼표면을 효과적으로 passivation하는 지점이 있는 것으로 보인다. $B_2H_6$의 농도는 상승할수록 carrier lifetime이 줄어드는 경향을 보였다. $B_2H_6$에서 농도가 올라감에 웨이퍼 표면의 defect로 작용했을 것으로 생각된다. 이에서 몇몇의 조건으로 태양전지를 제작한 결과 $H_2/SiH_4$ 비율에 따라서는 carrier lifetime은 효율에 그 영향이 미미한 것으로 조사되었고, $B_2H_6$의 농도가 낮을수록 개방전압은 상승하는 결과를 얻어 도핑 농도가 효율에 직접적인 형향을 주는 것으로 나타났다.

  • PDF

Carrier Lfetime and Anormal Cnduction Penomena in Silicon Epitaxial Layer-substrate Junction (Epitaxial에 의한 Si epi층의 케리어 수명과 P-N접합의 이상전도현상)

  • 성영권;민남기;김승배
    • 전기의세계
    • /
    • v.26 no.5
    • /
    • pp.83-89
    • /
    • 1977
  • This paper described the minority carrier lifetime in Si epitaxial layer, and also the voltage (V) versus current (I) characteristics of high resistivity Si epitaxial layer0substrate junction. The measured lifetime in Si epi-layer was much shorter than in bulk, and the temperature dependence of lifetime was found to agree well with Shockley-Read model of recombination which applies to high resistivity n-type materials. The V-I curve showed; an ohmic region (I.var.V), a sublinear region (I.var.V$^{1}$2/), a space charge limited current region (I.var.V$^{2}$), and finally a negative resistance region. We investigated these phenomena by the theory of the relaxation semiconductor.

  • PDF

The moving photocarrier grating technique for the determination of transport parameters in a-Se:As films

  • Park, Chang-Hee;Lee, Kwang-Sei;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.47-48
    • /
    • 2005
  • The moving photocarrier grating(MPG) technique for the determination of the carrier mobilities and the recombination lifetime in a-Se:As films have been studied. The electron and hole drift mobility and the recombination lifetime of a-Se films with arsenic (As) additions have been obtained. We have found an increase in hole drift mobility and recombination lifetime, especially when 0.3% As is added into a-Se film. However, the electron mobility exhibits no observable change up to 0.5% As addition in a-Se films.0.3% As added a-Se film also exhibits the maximum short circuit current densities per laser intensity of $5.29\times10^{-7}$ A/W.

  • PDF

Transport property of a Se:As films for digital x ray imaging

  • Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.85-88
    • /
    • 2006
  • The transport properties of amorphous selenium typical of the material used in direct conversion x-ray imaging devices are reported. The effects of As addition on the carrier mobility and recombination lifetime in amorphous selenium (a-Se) films have been studied using the moving photocarrier grating (MPG) technique. We have found an increase in hole drift mobility and recombination lifetime, especially when 0.3% As is added into a-Se film, whereas electron mobility decreases with As addition due to the defect density. The transport properties for As doped a-Se films obtained by using MPG technique have been compared with the drift mobilities of holes and electrons obtained by time of flight (TOF) measurement.

  • PDF

Estimation of mechanical damage by minority carrier recombination lifetime and near surface micro defect in silicon wafer (실리콘 웨이퍼에서 소수 반송자 재결합 수명과 표면 부위 미세 결함에 의한 기계적 손상 평가)

  • 최치영;조상희
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.157-161
    • /
    • 1999
  • We investigated the effect of mechanical back side damage in Czochralski silicon wafer. The intensity of mechanical damage was evaluated by minority carrier recombination lifetime by laser excitation/microwave reflection photoconductance decay ($\mu$-PCD) technique, wet oxidation/preferential etching methods, near surface micro defect (NSMD) analysis, and X-ray section topography. The data indicate that the higher the mechanical damage intensity, the lower the minority carrier lifetime, and NSMD density increased proportionally, also correlated to the oxidation induced stacking fault (OISF) density. Thus, NSMD technique can be used separately from conventional etching method in OISF measurement.

  • PDF

Plasma nitridation of atomic layer deposition-Al2O3 by NH3 in PECVD

  • Cha, Ham cho rom;Cho, Young Joon;Chang, Hyo Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.304.1-304.1
    • /
    • 2016
  • We have investigated the effect of plasma nitridation of atomic layer deposited-Al2O3 films of monocrystalline Si wafers and the thermal properties of nitridated Al2O3 films. Nitridation was performed on Al2O3 to form aluminum oxynitride (AlON) using NH3 plasma treatment in a plasma-enhanced chemical vapor deposition and it was conducted at temperature of $400^{\circ}C$ with various plasma power condition. After nitridation, we performed firing and forming gas annealing (FGA). For each step, we have observed the minority carrier lifetime and the implied Voc by using quasi-Steady-State photoconductance (QSSPC). We confirmed a tendency to increase the minority carrier lifetime and the implied Voc after the nitridation. On the other hand, the minority carrier lifetime and the implied Voc was decreased after Firing and forming gas annealing (FGA). To get more information, we studied properties of the plasma treated Al2O3 films by using Secondary Ion Mass Spectroscopy (SIMS) and X-ray Photoelectron Spectroscopy (XPS).

  • PDF

Evaluation of mechanical backside damage by minority carrier recombination lifetime and photo-acoustic displacement method in silicon wafer (실리콘 웨이퍼에서 광열 변위법과 소수 반송자 재결합 수명 측정에 의한 기계적 후면 손상 평가)

  • 최치영;조상희
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.117-123
    • /
    • 1998
  • We investigated the effect of mechanical backside damage in Czochralski grown silicon wafer. The intensity of mechanical damage was evaluated by minority carrier recombination lifetime by laser excitation/microwave reflection photoconductivity decay method, photo-acoustic displacement method, X-ray section topography, and wet oxidation/preferential etching methods. The data indicate that the higher the mechanical damage intensity, the lower the minority carrier lifetime, and the photo-acoustic displacement values increased proportionally, and it was at Grade 1: Grade 2:Grade 3 = 1:19.6:41 that the normalized relative quantization ratio of excess photo-acoustic displacement in damaged wafer was calculated, which are normalized to the excess PAD from sample Grade 1.

  • PDF

Interface Passivation Properties of Crystalline Silicon Wafer Using Hydrogenated Amorphous Silicon Thin Film by Hot-Wire CVD (열선 CVD법으로 증착된 비정질 실리콘 박막과 결정질 실리콘 기판 계면의 passivation 특성 분석)

  • Kim, Chan-Seok;Jeong, Dae-Young;Song, Jun-Yong;Park, Sang-Hyun;Cho, Jun-Sik;Yoon, Kyoung-Hoon;Song, Jin-Soo;Kim, Dong-Hwan;Yi, Jun-Sin;Lee, Jeong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.172-175
    • /
    • 2009
  • n-type crystalline silicon wafers were passivated with intrinsic a-Si:H thin films on both sides using HWCVD. Minority carrier lifetime measurement was used to verify interface passivation properties between a-Si:H thin film and crystalline Si wafer. Thin film interface characteristics were investigated depending on $H_2/SiH_4$ ratio and hot wire deposition temperature. Vacuum annealing were processed after deposition a-Si:H thin films on both sides to investigate thermal effects from post process steps. We noticed the effect of interface passivation properties according to $H_2/SiH_4$ ratio and hot wire deposition temperature, and we had maximum point of minority carrier lifetime at H2/SiH4 10 ratio and $1600^{\circ}C$ wire temperature.

  • PDF

Study on the Passivation of Si Surface by Incorporation of Nitrogen in Al2O3 Thin Films Grown by Atomic Layer Deposition (원자층 증착법으로 형성된 Al2O3 박막의 질소 도핑에 따른 실리콘 표면의 부동화 특성 연구)

  • Hong, Hee Kyeung;Heo, Jaeyeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.111-115
    • /
    • 2015
  • To improve the efficiency of the Si solar cell, high minority carrier life time is required. Therefore, the passivation technology is important to eliminate point defects on the silicon surface, causing the loss of minority carrier recombination. PECVD or post-annealing of thermally-grown $SiO_2$ is commonly used to form the passivation layer, but a high-temperature process and low thermal stability is a critical factor of low minority carrier lifetime. In this study, atomic layer deposition was used to grow the $Al_2O_3$ passivation layer at low temperature process. $Al_2O_3$ was selected as a passivation layer which has a low surface recombination velocity because of the fixed charge density. For the high charge density, an improved minority carrier lifetime, and a low surface recombination, nitrogen was doped in the $Al_2O_3$ thin film and the improvement of passivation was studied.

A Study on Characteristics of Wet Gate Oxide and Nitride Oxide(NO) Device (Wet 게이트 산화막과 Nitride 산화막 소자의 특성에 관한 연구)

  • 이용희;최영규;류기한;이천희
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.970-973
    • /
    • 1999
  • When the size of the device is decreased, the hot carrier degradation presents a severe problem for long-term device reliability. In this paper we fabricated & tested the 0.26${\mu}{\textrm}{m}$ NMOSFET with wet gate oxide and nitride oxide gate to compare that the characteristics of hot carrier effect, charge to breakdown, transistor Id_Vg curve and charge trapping using the Hp4145 device tester As a result we find that the characteristics of nitride oxide gate device better than wet gate oxide device, especially a hot carrier lifetime(nitride oxide gate device satisfied 30years, but the lifetime of wet gate oxide was only 0.1year), variation of Vg, charge to breakdown and charge trapping etc.

  • PDF