• 제목/요약/키워드: carrier gas

검색결과 629건 처리시간 0.023초

Carrier Gas Assisted Solvent Vapor Treatment for Surface Nanostructuring of Molecular Thin Films

  • Gong, Hye-Jin;Kim, Jin-Hyun;Yim, Sang-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.825-827
    • /
    • 2012
  • In this study, the variation in surface morphology of copper phthalocyanine (CuPc) thin films treated with a flow of acetone vapor assisted by nitrogen carrier gas was investigated. The CuPc nanorods with similar dimensions were well dispersed throughout the whole film surfaces after ~20 min. of treatment. However, the electronic absorption spectra only changed slightly, which indicates that molecular stacking was not altered during treatment. This treating method is simple and more advantageous compared to other solvent treating technologies such as mixed solvent spray treatment using organic solvents and water since it requires relatively mild treating conditions and does not need the presence of water.

화학기상 성장법에 의한 실리콘 부착에 관한 수치해석 (Numerical Analysis of Silicon Deposition in CVD Reactor)

  • 김인;백병준;윤정모;이철로
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.359-364
    • /
    • 2000
  • The fluid flow, heat transfer and the local mass fi-action of chemical species in the chemical vapor deposition(CVD) manufacturing process are numerically studied. The deposition of silicon from dilute silane is hydrogen carrier gas in a horizontal CVD reactor is investigated. The effect of inlet carrier gas velocity, mass fraction of silane, susceptor angle on the deposition thickness and uniformity was represented.

  • PDF

Magnetic Separation of FCC Equilibrium Catalyst by HGMS

  • Xiang, Fazhu;He, Pingbo;Chen, Jin
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.770-775
    • /
    • 2001
  • Effects of magnetic field and carrier gas velocity on the magnetic separation of FCC catalyst by a high gradient magnetic separator were studied. The activities of the equilibrium catalyst, the magnetic particles and the nonmagnetic particles were evaluated in a fixed bed microreactor The results showed that heavy metal contaminated catalyst can be selectively separated by means of high gradient magnetic separation at magnetic field 0.5T and carrier gas velocity 0.3m.s$^{-1}$ , and lightly metal contaminated catalyst retained high catalytic activity.

  • PDF

수평 및 수직형 CVD 증착로의 실리콘 부착에 관한 수치해석 (Numerical Analysis of Silicon Deposition in Horizontal & Vertical CVD Reactor)

  • 김인;백병준
    • 대한기계학회논문집B
    • /
    • 제26권3호
    • /
    • pp.410-416
    • /
    • 2002
  • The fluid flow, heat transfer and the local mass fraction of chemical species in the chemical vapor deposition(CVD) manufacturing process are studied numerically. Flow with a dilute precursor concentration of silane in hydrogen as the carrier gas enters to the reactor and deposits silicon onto the heated surface. The silicon deposition rate using silane is calculated in the horizontal or vertical, axisymmetric reactor. The effects of inlet carrier gas velocity, mass fraction of silane, susceptor angle and rotation of surface on the deposition rate are described.

순 아르콘 캐리어 가스와 APCVD로 성장된 다결정 3C-SiC 박막의 기계적 특성 (Mechanical characteristics of polycrystalline 3C-SiC thin films using Ar carrier gas by APCVD)

  • 한기봉;정귀상
    • 센서학회지
    • /
    • 제16권4호
    • /
    • pp.319-323
    • /
    • 2007
  • This paper describes the mechanical characteristics of poly 3C-SiC thin films grown on Si wafers with thermal oxide. In this work, the poly 3C-SiC thin film was deposited by APCVD method using only Ar carrier gas and single precursor HMDS at $1100^{\circ}C$. The elastic modulus and hardness of poly 3C-SiC thin films were measured using nanoindentation. Also, the roughness of surface was investigated by AFM. The resulting values of elastic modulus E, hardness H and the roughness of the poly 3C-SiC film are 305 GPa, 26 GPa and 49.35 nm respectively. The mechanical properties of the grown poly 3C-SiC film are better than bulk Si wafers. Therefore, the poly 3C-SiC thin film is suitable for abrasion, high frequency and MEMS applications.

CVD법으로 합성된 알루미나 박막 및 분말의 열처리에 따른 특성 (Properties of the Chemically Vapor Deposited Alumina Thin Film and Powder on Heat Treatment)

  • 최두진;정형진
    • 한국세라믹학회지
    • /
    • 제26권2호
    • /
    • pp.235-241
    • /
    • 1989
  • A study on the APCVD(atmospheric pressure chemical vapor deposition) Al2O3 was done by using the aluminum-tri-isopropoxide/N2 reaction system at 40$0^{\circ}C$. When the flow rate of the carrier gas(N2) was over 2SLPM, heterogeneous reaction was observed. However, when the flow rate of the carrier gas was below 2SLPM, a porously deposited film or powder formation was observed. The film formed by a heterogeneous reaction was optically dense. The dense film is thought to be a kind of a hydrated alumina. After a thermal treatment of the film in the range of temperature from $600^{\circ}C$ to 1, 20$0^{\circ}C$, properties of the film seems to be changed due to dehydration and densification process. In the case of the powder on heat treatment(600~1, 20$0^{\circ}C$), both a phase transformation and the change of OH peak was observed.

  • PDF

Use of Nuclear Magnetic Resonance Spectroscopy in Analysis of Fennel Essential Oil

  • AbouZid, Sameh
    • Natural Product Sciences
    • /
    • 제22권1호
    • /
    • pp.30-34
    • /
    • 2016
  • A simple and rapid method based on proton nuclear magnetic resonance spectroscopy was developed for determination of trans-anethole content in fennel essential oil. Spectra of pure trans-anethole, of the pure essential oil of fennel, and of the pure oil of fennel with thymol internal standard were recorded. The signal of $H-1^/$ was used for quantification of trans-anethole. This proton signal is well separated in the proton magnetic resonance spectrum of the compound. No reference compound is needed and cheap internal standard was used. The results obtained from spectroscopic analysis were compared with those obtained by gas chromatography. Additionally, the developed method was used for determination of the type of vegetable oil used as a carrier in commercial products, which cannot be quantified as such by gas chromatography. This study demonstrates the application of proton nuclear magnetic resonance spectroscopy as a quality control method for estimation of essential oil components.

Throat Carriage Rate and Antimicrobial Resistance of Streptococcus pyogenes In Rural Children in Argentina

  • Delpech, Gaston;Sparo, Monica;Baldaccini, Beatriz;Pourcel, Gisela;Lissarrague, Sabina;Allende, Leonardo Garcia
    • Journal of Preventive Medicine and Public Health
    • /
    • 제50권2호
    • /
    • pp.127-132
    • /
    • 2017
  • Objectives: The aim of this study was to determine the prevalence of asymptomatic carriers of group A ${\beta}-hemolytic$ streptococci (GAS) in children living in a rural community and to investigate the association between episodes of acute pharyngitis and carrier status. Methods: Throat swabs were collected from September to November 2013 among children 5-13 years of age from a rural community (Maria Ignacia-Vela, Argentina). The phenotypic characterization of isolates was performed by conventional tests. Antimicrobial susceptibility was assayed for penicillin, tetracycline, chloramphenicol, erythromycin, and clindamycin (disk diffusion). The minimum inhibitory concentration was determined for penicillin, cefotaxime, tetracycline, and erythromycin. Results: The carriage of ${\beta}-hemolytic$ streptococci was detected in 18.1% of participants, with Streptococcus pyogenes in 18 participants followed by S. dysgalactiae ssp. equisimilis in 5. The highest proportion of GAS was found in 8 to 10-year-old children. No significant association between the number of episodes of acute pharyngitis suffered in the last year and the carrier state was detected (p>0.05). Tetracycline resistance (55.5%) and macrolide-resistant phenotypes (11.1%) were observed. Resistance to penicillin, cefotaxime, or chloramphenicol was not expressed in any streptococcal isolate. Conclusions: The present study demonstrated significant throat carriage of GAS and the presence of group C streptococci (S. dysgalactiae ssp. equisimilis) in an Argentinian rural population. These results point out the need for continuous surveillance of GAS and non-GAS carriage as well as of antimicrobial resistance in highly susceptible populations, such as school-aged rural children. An extended surveillance program including school-aged children from different cities should be considered to estimate the prevalence of GAS carriage in Argentina.

Gas Separation Membranes Containing $Re_6Se_8(MeCN)_6^{2+}$ Cluster-Supported Cobalt-Porphyrin Complexes

  • Park Su Mi;Won Jongok;Lee Myung-Jin;Kang Yong Soo;Kim Se-Hye;Kim Youngmee;Kim Sung-Jin
    • Macromolecular Research
    • /
    • 제12권6호
    • /
    • pp.598-603
    • /
    • 2004
  • Cellulose nitrate (CN) composite membranes, containing cobalt porphyrin (CoP) complexes self-assembled within nanometer-sized rhenium clusters (ReCoP), have been prepared and their oxygen and nitrogen gas perme­abilities were analyzed. The solubility of ReCoP and the characteristics of the corresponding composite membranes were analyzed using a Cahn microbalance, FT-IR spectroscopy, wide-angle X-ray scattering, and differential scanning calorimetry. The nitrogen permeability through the CN composite membranes decreased upon addition of ReCoP and CoP, which implies that the presence of these oxygen carrier complexes affects the structure of the polymer matrix. The oxygen permeability through the composite membranes containing small quantities of ReCoP decreased, but it increased upon increasing the concentration. The oxygen gas transport was affected by the matrix at low ReCoP concentrations, but higher concentrations of ReCoP increased the oxygen permeability as a result of its reversible and specific interactions with oxygen, effectively realizing ReCoP carrier-mediated oxygen transport.

케미컬루핑 연소를 위한 산소전달입자의 최소유동화속도 및 고속유동층 전이유속에 미치는 압력의 영향 (Effect of Pressure on Minimum Fluidization Velocity and Transition Velocity to Fast Fluidization of Oxygen Carrier for Chemical Looping Combustor)

  • 김정환;배달희;백점인;박영성;류호정
    • 한국수소및신에너지학회논문집
    • /
    • 제28권1호
    • /
    • pp.85-91
    • /
    • 2017
  • To develop a pressurized chemical looping combustor, effect of pressure on minimum fluidization velocity and transition velocity to fast fluidization was investigated in a two-interconnected pressurized fluidized bed system using oxygen carrier particle. The minimum fluidization velocity was measured by bed pressure drop measurement with variation of gas velocity. The measured minimum fluidization velocity decreased as the pressure increased. The transition velocity to fast fluidization was measured by emptying time method and decreased as the pressure increased. Gas velocity in the fuel reactor should be greater than the minimum fluidization velocity and gas velocity in the air reactor should be greater than the transition velocity to fast fluidization to ensure proper operation of two interconnected fluidized bed system.