• 제목/요약/키워드: cardiovascular toxicity

검색결과 122건 처리시간 0.026초

Assessment of the Cardioprotection Offered by Fisetin in H2O2-induced Zebrafish (Danio rerio)-Tg (cmlc2: egfp)

  • Lee, Jeong-Soo;Park, Eun-Seok;Kim, In-Sik
    • 대한의생명과학회지
    • /
    • 제24권2호
    • /
    • pp.130-133
    • /
    • 2018
  • The aim of this study was to evaluate the protective function of fisetin, a natural flavonoid in zebrafish heart for the treatment of myocardial infarction in coronary and ischemic heart disease. For this purpose, we induced oxidative stress zebrafish (Danio rerio)-Tg (cmlc2: egfp) by $H_2O_2$ and then administered fisetin, the protective effect of fisetin was determined by measuring the heart rate following fisetin administration. After testing the toxicity of fisetin, we found that the heartt increased in a concentration-dependent manner, however there was no difference between the heart rates of embryos and adults. The improved heart rate demonstrated the cardioprotective effect of fisetin. The result showed that fisetin, at concentration of 3and $5{\mu}M$, significantly increased heart rate compared with the heart with $H_2O_2$ alone. This indicates that fisetin plays an important role in the prevention of heart damage and treatment of cardiovascular diseases caused by oxidative stress due to ischemia / reperfusion.

Mechanisms of Russell's Viper Venom Toxicity on Renal Function; Reversal by Antivenom

  • Chaiyabutr, Narongsak;Napathorn, Sophon;Sitprija, Visith
    • Toxicological Research
    • /
    • 제17권
    • /
    • pp.117-125
    • /
    • 2001
  • Envenoming by Russells viper causes a broad spectrum of renal impairment. Renal failure is an important complication in patients bitten by Russells viper. Experimental work in animals and in vitro has elucidated pathophysiological mechanisms that contribute to life threatening complications and have suggested possibilities for therapeutic intervention. The evidence in experimental animals regarding mechanisms of venom action in relation to changes in either extrarenal or intrarenal factors is presented. The cardiovascular system and renal hemodynamics are affected by venom. Reductions of renal function including renal hemodynamics are associated directly with changes in general circulation during envenomation. Possible endogenous mechanisms for releasing the hormone inducing renal vasoconstriction after envenomation are evident. Hormonal factor such as the catecholamine, prostaglandin and renin angiotensin systems induce these changes. Direct nephrotoxicity of venom action is studied in the isolated per-fused kidney. Characteristic polarization of the cell membrane, changes of mitochondrial activity and Na-K ATPase in renal tubular cells are observed. Changes in renal function and the cardiovascular system are observed of ter envenomation and are reversed by the administration of Russells viper antivenom (purified equine immunoglobulin, $Fab_2$ fragment). The neutralizing effects are more efficient when the intravenous injection of antivenom is given within 30 min after the envenomation.

  • PDF

Styrene 및 Styrene-oxide가 송사리 알의 초기발생 과정에 미치는 독성 (Toxicity of Styrene and Styrene-oxide in Embryos of the Japanese Medaka (Oryzias latipes))

  • 박형숙;안혜원
    • Environmental Analysis Health and Toxicology
    • /
    • 제15권3호
    • /
    • pp.61-67
    • /
    • 2000
  • Toxic lesions of styrene in the Japanese Medaka (Oryzias latipes) were compared with those of styrene oxide, the active metabolite of styrene, using embryo-larval assays. The developmental stages of Japanese Medaka (Oryzias latipes) treated with both chemicals were not altered and progressed normally. However, styrene oxide was more toxic than styrene in terms of causing death and lesions . High concentrations of styrene (higher than 4.9 ppm) and styrene oxide (higher than 2.4 ppm), resulting in more than 50% mortality, caused similar lesions of cardiovascular system, craniofacial bone formation and spinal deformities, although a number of lesions were not observed by both chemicals . In the group treated with styrene, eyeball sizes and intereye distances were reduced, while, in the group treated with styrene oxide , the eyes and eye cups were not developed and two eyes were sometimes fused. In addition, styrene oxide caused the lesion which involved the posterior brain and brain stem were herniated through the spinal cord . The noticeable difference of toxic symptoms between these two chemicals was the time of onset. Toxicities of cardiovascular system and craniofacial bone formation appeared on day 3 of development in styrene oxide treated group, but, styrene treated group staned to show hemorrhages on day 3 and the craniofacial malformation were appeared on day 5, These differences between two chemicals may be due to the metabolism of styrene to styrene oxide, the reactive intermediate.

  • PDF

어성초 추출물의 혈관 평활근 세포 이주 및 증식 억제 활성에 관한 연구 (Effects of Houttuynia cordata Thunb Extract Inhibits on the Migration and Proliferation of Vascular Smooth Muscle Cell)

  • 한정호;박선남;윤미소;최옥병
    • 생약학회지
    • /
    • 제42권2호
    • /
    • pp.182-186
    • /
    • 2011
  • Houttuynia cordata Thunb.[H.cordata]belonging to Saururaceae, is a wild medicinal herb of perennial plants, and grows well in a place with a lot of shade and moisture. The medical action of H.cordata is reported to have an antitumer effect, toxicity-suppressive effect, antifungal effect, diuretic effect, and antioxidative action, but its effect hasn't been reported on cardiovascular diseases, such as ateriosclerosis and hypertension yet. This study intended to confirm the effect of the water extract of H.cordata on the migration and proliferation of rat aortic smooth muscle cells. Such results show that the water extract of H.cordata suppresses the migration and proliferation of rat aortic smooth muscle cells. It is believed that a useful clue will be offered later to the prevention of cardiovascular diseases such as ateriosclerosis and hypertension, and the development of their medicines on the basis of the fact.

Gene Expression Analysis for Statin-induced Cytotoxicity from Rat Primary Hepatocytes

  • Ko, Moon-Jeong;Ahn, Joon-Ik;Shin, Hee-Jung;Kim, Hye-Soo;Chung, Hye-Joo;Jeong, Ho-Sang
    • Genomics & Informatics
    • /
    • 제8권1호
    • /
    • pp.41-49
    • /
    • 2010
  • Statins are competitive inhibitors of hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase and used most frequently to reduce plasma cholesterol levels and to decrease cardiovascular events. However, statins also have been reported to have undesirable side effects such as myotoxicity and hepatotoxicity associated with their intrinsic efficacy mechanisms. Clinical studies recurrently reported that statin therapy elevated the level of liver enzymes such as ALT and AST in patients suggesting possible liver toxicity due to statins. This observation has been drawn great attention since statins are the most prescribed drugs and statin-therapy was extended to a larger number of high-risk patients. Here we employed rat primary hepatocytes and microarray technique to understand underlying mechanism responsible for statin-induced liver toxicity on cell level. We isolated genes whose expressions were commonly modulated by statin treatments and examined their biological functions. It is of interest that those genes have function related to response to stress in particular immunity and defense in cells. Our study provided the basic information on cellular mechanism of statin-induced cytotoxicity and may serve for finding indicator genes of statin -induced toxicity in rat primary hepatocytes.

숙지황(Rehmannia glutinosa)의 약리작용과 독성 (Pharmacological Action and Toxicity of Rehmannia glutinosa)

  • 박영철;이기용;백낙민;손혜영;국윤범;이선동
    • 대한한의학방제학회지
    • /
    • 제19권1호
    • /
    • pp.145-160
    • /
    • 2011
  • Objectives : Rehmannia glutinosa has been used extensively in Korean traditional medicine. Although thorough clinical trials are lacking, Various pharmacological actions for Rehmannia glutinosa has been identified newly using animal models. In addition, it was reported that reactive intermediates, potentially causing toxic effects, was isolated from one of components in Rehmannia glutinosa. In this article, it is purposed for explanation and introduction of new studies for Rehmannia glutinosa in terms of pharmacological action and toxicology. Methods : New studies for Rehmannia glutinosa were reviewed and summarized in terms of pharmacological action and toxicity. Results and Conclusions : Rhmannia glutinosa and its components including iridoids, saccharides, as well as amino acid, showed a variety of pharmacological actions on the blood system, immune system, endocrine system, cardiovascular system and the nervous system. In addition, it was identified that aucubin, one of major components of Rhmannia glutinosa was biotransformed to reactive intermediates by ${\beta}$-glycosidase and acid-hydrolysis, resulting in forming aucubigenin- albumin adduct. Even if a lot of new pharmacological actions has been identified, it should be considered for Rhmannia glutinosa to contain the material producing reactive intermediates which may induce the side effects.

Non-Ionic Surfactants Antagonize Toxicity of Potential Phenolic Endocrine-Disrupting Chemicals, Including Triclosan in Caenorhabditis elegans

  • Alfhili, Mohammad A.;Yoon, Dong Suk;Faten, Taki A.;Francis, Jocelyn A.;Cha, Dong Seok;Zhang, Baohong;Pan, Xiaoping;Lee, Myon-Hee
    • Molecules and Cells
    • /
    • 제41권12호
    • /
    • pp.1052-1060
    • /
    • 2018
  • Triclosan (TCS) is a phenolic antimicrobial chemical used in consumer products and medical devices. Evidence from in vitro and in vivo animal studies has linked TCS to numerous health problems, including allergic, cardiovascular, and neurodegenerative disease. Using Caenorhabditis elegans as a model system, we here show that short-term TCS treatment ($LC_{50}$: ~0.2 mM) significantly induced mortality in a dose-dependent manner. Notably, TCS-induced mortality was dramatically suppressed by co-treatment with non-ionic surfactants (NISs: e.g., Tween 20, Tween 80, NP-40, and Triton X-100), but not with anionic surfactants (e.g., sodium dodecyl sulfate). To identify the range of compounds susceptible to NIS inhibition, other structurally related chemical compounds were also examined. Of the compounds tested, only the toxicity of phenolic compounds (bisphenol A and benzyl 4-hydroxybenzoic acid) was significantly abrogated by NISs. Mechanistic analyses using TCS revealed that NISs appear to interfere with TCS-mediated mortality by micellar solubilization. Once internalized, the TCS-micelle complex is inefficiently exported in worms lacking PMP-3 (encoding an ATP-binding cassette (ABC) transporter) transmembrane protein, resulting in overt toxicity. Since many EDCs and surfactants are extensively used in commercial products, findings from this study provide valuable insights to devise safer pharmaceutical and nutritional preparations.

가습기 살균제 성분(PHMG, PGH, CMIT/MIT)의 사람 피부세포 독성 및 제브라피쉬 뇌신경 독성 비교 연구 (Comparison study of dermal cell toxicity and zebrafish brain toxicity by humidifier sterilizer chemicals (PHMG, PGH, CMIT/MIT))

  • 조경현;김재룡
    • 환경생물
    • /
    • 제38권2호
    • /
    • pp.271-277
    • /
    • 2020
  • 가습기 살균제 성분(PHMG, PGH, CMIT/MIT)의 노출에 의한 다양한 장기에 대한 독성들에 대해서 피해사례는 계속 증가하고 있으나, 세포모델과 동물모델에서의 연구와 보고는 아직 부족한 실정이다. 심혈관 독성, 간 독성, 배아 독성에 대해서는 최근 알려져 있으나 뇌신경 독성과 피부 독성에 대해서는 상대적으로 적게 알려져 있다. 본 연구에서는 이들 세 가지 성분들의 피부 독성과 뇌신경 독성을 사람 피부섬유세포와 제브라피쉬 동물모델을 대상으로 각각 평가하였다. 사람피부섬유세포에 세 가지의 성분들을 0, 2, 4, 6, 8, 16 mg L-1 (최종농도)로 처리하였을 때, 세포 생존율은 PHMG가 33%로 가장 낮았고, PGH가 49%, CMIT/MIT가 40%의 생존율을 보였다. 세포배양액 내의 산화물을 정량해본 결과, PHMG 처리된 세포가 28 nmol MDA로 가장 높았고, PGH가 13 nmol MDA, CMIT가 21 nmol MDA를 보였다. 제브라피쉬 사육수조에 PHMG, PGH, CMIT를 40 mg L-1의 최종농도가 되도록 희석한 후, 제브라피쉬를 30분간 노출시킨 후 중뇌의 광시개영역(optic tectum)을 횡면 미세절단하여 산화물의 생성정도를 비교해본 결과, CMIT/MIT를 처리한 그룹에서 대조군 대비 17배 많은 산화물의 생성이 있었고, PGH를 처리한 그룹에서는 15배, PHMG를 처리한 그룹에서는 11배 많은 산화물이 관찰되어 심각한 뇌신경계 독성을 보여주었다. 결론적으로 세 가지 종류의 가습기 살균제 성분들에서 모두 심각한 피부세포 독성과 뇌신경계 독성이 나타났는데, 피부 독성은 특히 PHMG가, 뇌신경계 독성은 특히 CMIT/MIT가 가장 심각하였다. 이들 결과들은 가습기 살균제에 노출된 어린이들이 뇌신경계 독성을 통하여 언어장애, 운동장애, 발달장애 등을 겪게 될 수도 있음을 실험적으로 제시한다.

($A{\beta}-oligomer$로 유도된 Neuro2A 세포주에서 용담사간탕(龍膽瀉肝湯)의 치매 억제 효과 (A Study on the Inhibitory Effect of Yeongdamsagantang on Alzheimer in $A{\beta}-oligomer-induced$ Neuro 2A Cell Lines)

  • 김해수;신유정;박종혁;김승모;백경민;박치상
    • 대한한의학회지
    • /
    • 제29권2호
    • /
    • pp.151-164
    • /
    • 2008
  • Objective: To investigate the effects of Yeongdamsagantang (YDGT) on apoptosis of neuronal cells that can result in dementia. Method: The water extract of the YDGT was tested in vitro for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with $A{\beta}$ oligomer-related dementias. $A{\beta}$ oligomers derived from proteolytic processing of the ${\beta}-amyloid$ precursor protein (APP), including the $amyloid-{\beta}$ peptide $(A{\beta})$, play a critical role in the pathogenesis of Alzheimer's disease. A neuroblastoma cell line stably expressing an $A{\beta}$ oligomerassociated neuronal degeneration was used to investigate if YDGT inhibits formation of $A{\beta}$ oligomer. To measure the ATP generating level in mitochondrial membrane, luciferin/luciferase luminescence kit (Promega) and luminator was used, and to survey the protein's apparition, confocal microscopy was used. Result: $A{\beta}oligomer$ had a profound attenuation in the increase in CT105 expressing neuro2A cells from YDGT. Experimental evidence indicates that YDGT protected against neuronal damage from cells, but its cellular and molecular mechanisms remain unknown. We demonstrated that YDGT inhibited formation of $amyloid-{\beta}$ $(A{\beta})$ oligomers, which were the behavior, and possibly causative, features of AD. The decreased $A{\beta}$ oligomer in the presence of YDGT was observed in the conditioned medium of this $A{\beta}oligomer-secreting$ cell line under in vitro. In the cells, YDGT significantly attenuated mitochondrion-initiated apoptosis. Conclusion: (i) a direct $A{\beta}$ oligomer toxicity and the apoptosis initiated by the mitochondria; and (ii) multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of $A{\beta}$ oligomer aggregation, underlie the neuroprotective effects of YDGT.

  • PDF

iPSC technology-Powerful hand for disease modeling and therapeutic screen

  • Kim, Changsung
    • BMB Reports
    • /
    • 제48권5호
    • /
    • pp.256-265
    • /
    • 2015
  • Cardiovascular and neurodegenerative diseases are major health threats in many developed countries. Recently, target tissues derived from human embryonic stem (hES) cells and induced pluripotent stem cells (iPSCs), such as cardiomyocytes (CMs) or neurons, have been actively mobilized for drug screening. Knowledge of drug toxicity and efficacy obtained using stem cell-derived tissues could parallel that obtained from human trials. Furthermore, iPSC disease models could be advantageous in the development of personalized medicine in various parts of disease sectors. To obtain the maximum benefit from iPSCs in disease modeling, researchers are now focusing on aging, maturation, and metabolism to recapitulate the pathological features seen in patients. Compared to pediatric disease modeling, adult-onset disease modeling with iPSCs requires proper maturation for full manifestation of pathological features. Herein, the success of iPSC technology, focusing on patient-specific drug treatment, maturation-based disease modeling, and alternative approaches to compensate for the current limitations of patient iPSC modeling, will be further discussed. [BMB Reports 2015; 48(5): 256-265]