• Title/Summary/Keyword: carboxylation

Search Result 65, Processing Time 0.032 seconds

Determination of Ozone Tolerance on Environmental Tree Species Using Standard Index (표준화 지수를 이용한 환경수목의 오존 내성 결정)

  • Han, Sim-Hee;Kim, Du-Hyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.3-12
    • /
    • 2009
  • Ozone tolerance of tree species was determined by standard index of physiological damages and biochemical defense responses under short-term ozone exposure. At the end of 150ppb $O_3$ fumigation, photosynthetic characteristics and antioxidative enzyme activities were analyzed in the leaves of five species(Koelreuteria paniculata, Firmiana simplex, Styrax japonica, Fraxinus rhynchophylla, Viburnum sargentii). Injury index was determined by the effect of ozone on photosynthetic parameters and malondialdehyde(MDA) content, and tolerance index was calculated using the rate of increase in superoxide dismutase(SOD), ascorbate-peroxidase(APX), glutathione reductase(GR) and catalase(CAT) activities. Apparent quantum yield(AQY), carboxylation efficiency(Ce) and photo-respiration rate(PR) decreased in the leaves of five species with increasing ozone exposure time. These parameters were considered as an appropriate indicator for stress evaluation. Antioxidative enzyme activities showed various results depending on the tree species, exposure time, and enzyme types. SOD activity of K. paniculata increased with ozone exposure time, and that of F. rhynchophylla increased only after 6 hours of ozone exposure. CAT activity of $O_3$-exposed F. simplex was lower than the control. Based on standard index, ozone tolerance ability of five species was determined as two tolerant species(F. rhynchophylla > K. paniculata) and three sensitive species(S. japonica > F. simplex > V. sargentii).

Effects of NaCl on the Growth and Physiological Characteristics of Crepidiastrum sonchifolium (Maxim.) Pak & Kawano (NaCl 처리가 고들빼기의 생장과 생리적 특성에 미치는 영향)

  • Lee, Kyeong Cheol;Han, Sang Kyun;Yoon, Kyeong Kyu;Lee, Hak bong;Song, Jae Mo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Background: This study was conducted to investigate the effects of NaCl concentration on the photosynthetic parameters, chlorophyll fluorescence and growth characteristics of Crepidiastrum sonchifolium. Methods and Results: As treatments, we subjected C. sonchifolium plants to four different concentrations of NaCl (0, 50, 100 and 200 mM). We found that the photosynthetic parameters maximum photosynthesis rate (PN max), net apparent quantum yield (Φ), maximum carboxylation rate (Vcmax), and maximum electron transport rate (Jmax) were significantly reduced at an NaCl concentration greater than 100 mM. In contrast, there was an increase in water-use efficiency with increasing NaCl concentration, although in terms of growth performances, leaf dry weight, root dry weight, stem length, and total dry weight all decreased with increasing NaCl concentration. Furthermore, leakage of electrolytes, as a consequence of cell membrane damage, clearly increased in response to an increase in NaCl concentration. Analysis of the polyphasic elevation of chlorophyll a fluorescence transients (OKJIP) revealed marked decrease in flux ratios (ΦPO, ΨO and ΦEO) and the PIabs, performance index in response to treatment with 200 mM NaCl, thereby reflectings the relatively reduced state of photosystem II. This increase in fluorescence could be due to a reduction in electron transport beyond Q-A. We thus found that the photosynthetic parameters, chlorophyll fluorescence and growth characteristics of C. sonchifolium significantly increased in response to treatment with 200 mM NaCl. Conclusions: Collectively, the findings of this study indicate that C. sonchifolium shows relatively low sensitivity to NaCl stress, although photosynthetic activity was markedly reduced in plants exposed to 200 mM NaCl.

Effects of Low Air Temperature and Low Radiation Conditions on Yield and Quality of Hot Pepper at the Early Growth Stage (생육 초기의 저온·저일조가 고추의 수량과 품질에 미치는 영향)

  • Wi, Seung Hwan;Lee, Hee Ju;Yu, In Ho;Jang, Yoon Ah;Yeo, Kyung Hwan;An, Se Woong;Lee, Jin Hyong;Kim, Sung Kyeom
    • Journal of Environmental Science International
    • /
    • v.29 no.10
    • /
    • pp.989-996
    • /
    • 2020
  • This study was conducted to determine the effect of low temperature and low radiation conditions on the yield and quality of hot pepper at an early growth stage in Korea. In plastic greenhouses, low temperature, low temperature with covered shading treatments were set 17 to 42 days after transplanting. The pepper growing degree days decreased by 5.5% due to the low temperature during the treatment period. Radiation decreased by 74.7% due to the covered shading. After commencing treatments, pepper plant growth decreased with low temperature and low radiation. Analysis of the yield showed that the first harvest was delayed by low radiation. The cumulative yields of 119 days after transplanting were 1,956, 2,171, and 2,018 g/㎡ for control, low temperature, and low temperature with low radiation respectively. Capsaicin and dihydrocapsaicin concentrations in pepper fruit decreased with low temperature and low radiation. To investigate the photosynthetic characteristics according to the treatment, the carbon dioxide reaction curve was analyzed using the biochemical model of photosynthesis. Results showed that the maximum photosynthetic rate, Vcmax (maximum carboxylation rate), J (electric transportation rate), and TPU (triose phosphate utilization) decreased at low temperatures; the maximum photosynthetic rate, J, and gm (dark respiration rate) were reduced by shading. These results indicate that low temperature and low radiation can retard early growth, yield, and quality, but these can also be recovered 119 days after planting. Based on the results, the yield and quality of pepper can recover from abiotic stresses with proper cultivation.

Ozone Sensitivity of Physiological Indicators for Stress Evaluation in Four Families of Quercus aliena Blume (갈참나무 4가계에서 스트레스 평가용 생리 지표들의 오존 민감성)

  • Kim, Du-Hyun;Han, Sim-Hee;Lee, Jae-Cheon
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.878-884
    • /
    • 2010
  • Ozone sensitivity of physiological indicators and the difference of ozone tolerance on 4 families of Quercus aliena seedlings were investigated on the basis of the standardized physiological indicators. Photosynthetic parameters, photosynthetic pigment and malondialdehyde (MDA) content, and antioxidative enzyme activities were measured or analyzed from the leaves of Q. aliena seedlings at the end of ozone fumigation, and ozone tolerance indices among 4 families were calculated with the standardized physiological parameters. After ozone treatment, the reduction of carboxylation efficiency was observed in the leaves of four families, and their reduction were ranged from -24.1% to -56.9% of control seedlings. Photosynthetic pigment content differed significantly among 4 families and treatments. The reduction of total chlorophyll content showed the highest in family SU4 (-40.6%) and the lowest family US2 (-18.8%). Ascorbate-peroxidase (APX) activity showed significant difference among families and treatments, and increased as compared with control in three families, except for family US2. On the basis of the physiological indices, ozone tolerance of four families was ranked in the order of US1 > SU4 > US2 > SU1. In conclusion, photosynthetic parameters, pigment content and APX activity were recommended as appropriate indicators to assess the tolerance against ozone stress of Q. aliena.

Comparative Analysis of Benzylideneacetone-derived Compounds on Insect Immunosuppressive and Antimicrobial Activities (벤질리덴아세톤 유도 화합물들의 곤충면역반응 억제와 살균력 비교 분석)

  • Seo, Sam-Yeol;Chun, Won-Su;Hong, Yong-Pyo;Yi, Young-Keun;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.51 no.3
    • /
    • pp.245-253
    • /
    • 2012
  • Benzylinedeneacetone (BZA) is a bacterial metabolite which is synthesized by at least two entomopathogenic bacteria, namely Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. It has been shown to possess inhibitory effects on insect cellular and humoral immune responses as well as antimicrobial activities against various species of bacteria and fungi. However, its relatively high phytotoxicity, and nonsystematic effect have thus far prevented its development into an optimal pesticide. This study screened five different BZA derivatives in order to select an optimal compound, which would have relatively high solubility and low phytotoxicity while retaining sufficient degrees of the immunosuppressive and antimicrobial activities associated with BZA. Hydroxylation of the benzene ring of BZA was found to significantly suppress its immunosuppressive and antimicrobial activities. Transformation of the ketone of BZA by carboxylation also suppressed the inhibitory activities. However, a shortening of the aliphatic chain of BZA into acetate form (4-hydroxyphenylacetic acid: HPA) did not decrease the inhibitory activity. HPA also showed much less phytotoxicity against the hot pepper plant Capsicum annuum, when compared to BZA. This study identified an optimal BZA derivative, which exhibited relatively little phytotoxicity, but retained a high degree of inhibitory activity to suppress insect immune responses and antimicrobial activities against plant pathogens.

Suitability of Physiological Indicators of Ozone Tolerance among 8 families of Sophora japonica (회화나무 8 가계간 오존 내성 차이에 대한 생리적 지표의 적합성)

  • Han, Sim-Hee;Kim, Du-Hyun;Lee, Jae-Cheon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.3
    • /
    • pp.173-182
    • /
    • 2010
  • This study was conducted to investigate ozone sensitivity of physiological indicators and the difference in ozone tolerance of 8 families of Sophora japonica seedlings on the basis of the standardized physiological indicators. After ozone treatment, photosynthetic parameters, photosynthetic pigments and malondialdehyde (MDA) content, and antioxidative enzyme activities were analyzed from the leaves of S. japonica seedlings. Ozone tolerance indices among 8 families were calculated with the standardized physiological parameters. In addition, the reduction of carboxylation efficiency and apparent quantum yield were observed in the leaves of seven families, except for family No. 6 and 7, respectively. The apparent quantum yield varied from -27% to -61% of the control seedlings. Photosynthetic pigment content differed significantly among 8 families, but was not affected significantly by ozone treatment. Superoxide dismutase (SOD) activity increased from 7% to 64% after ozone exposure, and significant difference existed among 8 families. Ascorbate-peroxidase (APX) activity of 8 families increased by ozone treatment, and the activity of family No. 7 showed the highest increase (218%) in comparison to their respective control plants. On the basis of the standardized indices, family No. 6 showed the lowest tolerance by indicating higher reduction of both photosynthetic parameters and pigment content and lower increase of antioxidative enzyme activities. On the contrary, family No. 7 showed the highest tolerance as indicated by lower reduction of photosynthetic parameters, higher amounts of photosynthetic pigments, and higher enzyme activity.

Determination of ibuprofen and its metabolites in human urine by GC-MS (GC-MS에 의한 소변 중 Ibuprofen의 대사체 규명 및 대사 연구)

  • Yu, Dae-Hyung;Cho, Jung-Hum;Hong, Jong-Ki
    • Analytical Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.179-186
    • /
    • 2010
  • The oxidative metabolism of ibuprofen in healthy male urine collected at 3, 6, 9, 12 and 15 h after oral administration of ibuprofen was studied by GC/MS assay. To detect conjugated metabolites of ibuprofen, urine sample was acid-hydrolyzed with 6 M HCl at $100^{\circ}C$ for 30 min. To effectively extract ibuprofen and its metabolites, liquid-liquid extraction (LLE) was conducted at pH 3, 5, and 7, respectively. As a result, LLE at pH 3 was shown to be the best extraction condition. For the determination of trace amounts of ibuprofen and its metabolites in extract, trimethylsilylation (TMS) with BSTFA was applied and followed by GC/MS analysis. In this study, main 5 metabolites including parent drug were detected and these metabolites were assigned as three hydroxylated forms and one carboxylated form. Each metabolite was tentatively identified by both interpretation of mass spectrum and comparison with previously reported results. In addition, time profile of urinary excretion rate for parent drugs and metabolites was studied. Finally, the metabolic pathways of ibuprofen were suggested on the basis of the structural elucidation of its metabolites and excretion profiles.

Photosynthetic Responses of Populus alba×glandulosa to Elevated CO2 Concentration and Air Temperature (CO2 농도 및 기온 상승에 대한 현사시나무의 광합성 반응)

  • Lee, Solji;Oh, Chang-Young;Han, Sim-Hee;Kim, Ki Woo;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2014
  • This study was conducted to investigate the photosynthetic characters of Populus alba${\times}$glandulosa cuttings in response to elevated $CO_2$ concentration and air temperature for selecting tree species adaptive to climate change. The cuttings were grown in environment controlled growth chambers with two combinations of $CO_2$ concentration and air temperature conditions: (i) $22^{\circ}C$ + $CO_2$ 380 ${\mu}mol$ $mol^{-1}$ (control) and (ii) $27^{\circ}C$ + $CO_2$ 770 ${\mu}mol$ $mol^{-1}$ (elevated) for almost three months. The cuttings under the elevated treatment showed reduced tree height and photosynthetic pigment contents such as chlorophyll and carotenoid. In particular, the elevated treatment resulted in a marked reduction in the chlorophyll a closely associated with $CO_2$ fixative reaction system. Different levels of reduction in photosynthetic characters were found under the elevated treatment. A decrease was noted in photochemical reaction system parameters: net apparent quantum yield (7%) and photosynthetic electron transport rate (14%). Moreover, a significant reduction was obvious in $CO_2$ fixative reaction system parameters: carboxylation efficiency (52%) and ribulose-1,5-bisphosphate(RuBP) regeneration rate (24%). These results suggest that the low level of photosynthetic capacity may be attributed to the decreased $CO_2$ fixative reaction system rather than photochemical reaction system.

Growth and Physiological Characteristics of Containerized Seedlings of Sageretia thea at Different Fertilization Treatments (시비처리에 따른 상동나무 용기묘의 생장 및 생리특성)

  • Eo, Hyun Ji;Son, Yong Hwan;Park, Sung Hyuk;Park, Gwang Hun;Lee, Kyeong Cheol;Son, Ho Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.2
    • /
    • pp.189-197
    • /
    • 2021
  • This study aims to optimize the appropriate concentration of fertilizers for Sageretia thea by analyzing growth performances (height and root collar diameter) and physiological characteristics (photosynthesis, chlorophyll contents, and chlorophyll fluorescence reaction). As fertilizer concentration was increased to 1.5 g·L-1, growth increased, but it decreased at 2.0 g·L-1 treatment. Root collar diameter growth was reduced because of higher fertilizer concentrations. Photosynthesis reactions showed the highest CO2 reaction curves, maximum photosynthesis rate, and maximum carboxylation rate in the 1.5 g·L-1 fertilizer treatment. The chlorophyll fluorescence reaction and SPAD values revealed that fertilizer treatment improves photosynthesis efficiency and robustness compared with untreated control. Therefore, the appropriate fertilizer concentration for producing good seedling quality of Sageretia thea is 1.0~1.5 g·L-1.

Development of A Three-Variable Canopy Photosynthetic Rate Model of Romaine Lettuce (Lactuca sativa L.) Grown in Plant Factory Modules Using Light Intensity, Temperature, and Growth Stage (광도, 온도, 생육 시기에 따른 식물공장 모듈 재배 로메인 상추의 3 변수 군락 광합성 모델 개발)

  • Jung, Dae Ho;Yoon, Hyo In;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.268-275
    • /
    • 2017
  • The photosynthetic rates of crops depend on growth environment factors, such as light intensity and temperature, and their photosynthetic efficiencies vary with growth stage. The objective of this study was to compare two different models expressing canopy photosynthetic rates of romaine lettuce (Lactuca sativa L., cv. Asia Heuk romaine) using three variables of light intensity, temperature, and growth stage. The canopy photosynthetic rates of the plants were measured 4, 7, 14, 21, and 28 days after transplanting at closed acrylic chambers ($1.0{\times}0.8{\times}0.5m$) using light-emitting diodes, in which indoor temperature and light intensity were designed to change from 19 to $28^{\circ}C$ and 50 to $500{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. At an initial $CO_2$ concentration of $2,000{\mu}mol{\cdot}mol^{-1}$, the canopy photosynthetic rate began to be calculated with $CO_2$ decrement over time. A simple multiplication model expressed by simply multiplying three single-variable models and a modified rectangular hyperbola model were compared. The modified rectangular hyperbola model additionally included photochemical efficiency, carboxylation conductance, and dark respiration which vary with temperature and growth stage. In validation, $R^2$ value was 0.849 in the simple multiplication model, while it increased to 0.861 in the modified rectangular hyperbola model. It was found that the modified rectangular hyperbola model was more suitable than the simple multiplication model in expressing the canopy photosynthetic rates affected by environmental factors (light Intensity and temperature) and growth factor (growth stage) in plant factory modules.