Browse > Article
http://dx.doi.org/10.5532/KJAFM.2010.12.3.173

Suitability of Physiological Indicators of Ozone Tolerance among 8 families of Sophora japonica  

Han, Sim-Hee (Department of Forest Resources Development, Korea Forest Research Institute)
Kim, Du-Hyun (Department of Forest Resources Development, Korea Forest Research Institute)
Lee, Jae-Cheon (Department of Forest Resources Development, Korea Forest Research Institute)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.12, no.3, 2010 , pp. 173-182 More about this Journal
Abstract
This study was conducted to investigate ozone sensitivity of physiological indicators and the difference in ozone tolerance of 8 families of Sophora japonica seedlings on the basis of the standardized physiological indicators. After ozone treatment, photosynthetic parameters, photosynthetic pigments and malondialdehyde (MDA) content, and antioxidative enzyme activities were analyzed from the leaves of S. japonica seedlings. Ozone tolerance indices among 8 families were calculated with the standardized physiological parameters. In addition, the reduction of carboxylation efficiency and apparent quantum yield were observed in the leaves of seven families, except for family No. 6 and 7, respectively. The apparent quantum yield varied from -27% to -61% of the control seedlings. Photosynthetic pigment content differed significantly among 8 families, but was not affected significantly by ozone treatment. Superoxide dismutase (SOD) activity increased from 7% to 64% after ozone exposure, and significant difference existed among 8 families. Ascorbate-peroxidase (APX) activity of 8 families increased by ozone treatment, and the activity of family No. 7 showed the highest increase (218%) in comparison to their respective control plants. On the basis of the standardized indices, family No. 6 showed the lowest tolerance by indicating higher reduction of both photosynthetic parameters and pigment content and lower increase of antioxidative enzyme activities. On the contrary, family No. 7 showed the highest tolerance as indicated by lower reduction of photosynthetic parameters, higher amounts of photosynthetic pigments, and higher enzyme activity.
Keywords
Physiological indicator; Ozone tolerance; Sophora japonica; Antioxidative enzyme; Photosynthetic parameter;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Pell, E. J., N. A. Eckardt, and R. E. Glick, 1994: Biochemical and molecular basis for impairment of photosynthetic potential. Photosynthesis Research 39, 453-462.   DOI
2 Pell, E. J., C. D. Schlagnhaufer, and R. N. Arteca, 1997: Ozone-induced oxidative stress: Mechanisms of action and reaction. Physiologia Plantarum 100, 264-273.   DOI
3 Pell, E. J., J. P. Sinn, B. W. Brendley, L. Samuelson, C. Vinten-Johansen, M. Tien, and J. Skillman, 1999: Differential response of four tree species to ozone-induced acceleration of foliar senescence. Plant, Cell & Environment 22, 779-790.   DOI
4 Reich, P. B., 1983: Effects of low concentrations of $O_3$ on net photosynthesis, dark respiration, and chlorophyll contents in aging hybrid poplar leaves. Plant Physiology 73, 291-296.   DOI
5 Ribas A., J. Penuelas, S. Elvira, and B. S. Gimeno, 2005: Ozone exposure induces the activation of leaf senescencerelated processes and morphological and growth changes in seedlings of Mediterranean tree species. Environmental Pollution 134, 291-300.   DOI
6 Schaub, M., J. M. Skelly, J. W. Zhang, J. A. Ferdinand, J. E. Savage, R. E. Stevenson, D. D. Davis, and K. C. Steiner, 2005: Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone under forest conditions. Environmental Pollution 133, 553-567.   DOI
7 Kim, D. K., S. H. Han, J. J. Ku, K. Y. Lee, and P. G. Kim, 2008: Physiological and biochemical responses to ozone toxicity in five species of genus Quercus seedlings. Korean Journal of Agricultural and Forest Meteorology 10, 47-57.   과학기술학회마을   DOI
8 Lee, J. C., C. Y. Oh, S. H. Han, and P. G. Kim, 2006: Photosynthetic inhibition in leaves of Alianthus altissima under $O_3$ fumigation. Journal of Ecology and Field Biology 29, 41-47.   DOI
9 Loreto, F., and S. Fares, 2007: Is ozone flux inside leaves only a damage indicator? Clues from volatile isoprenoid studies. Plant Physiology 143, 1096-1100.   DOI
10 Ministry of Environment, 2008: Annual Report of Ambient Air Quality in Korea. 393pp.
11 Nie, G. Y., M. Tomasevic, and N. R. Baker, 1993: Effects of ozone on the photosynthetic apparatus and leaf proteins during leaf development in wheat. Plant, Cell and Environment 16, 643-651.   DOI
12 Nowak, D. J., and J. F. Dwier, 2007: Understanding the benefits and costs of urban forest ecosystems. Urban and Community Forestry in the Northeast. Kuser, J.E. (ed.) Springer Netherlands. 25-44.
13 Oksanen, E., and M. Rousi, 2001: Differences of Betula origins in ozone sensitivity based on open-filed experiment over two growing seasons. Canadian Journal of Forest Research 31, 804-811.   DOI
14 Oksanen, E., G. Amores, H. Kokko, J. M. Santamaria, and L. Karenlampi, 2001: Genotypic variation in growth and physiological responses of Finish hybrid aspen(Populus tremuloides ${\times}$ P. tremula) to elevated tropospheric ozone concentration. Tree Physiology 21, 1171-1181.   DOI   ScienceOn
15 Iglesias, J. D., A. Calatayud, E. Barreno, E. Primo-Millo, and M. Talon, 2006: Responses of citrus plants to ozone: Leaf biochemistry, antioxidant mechanisms and lipid peroxidation. Plant Physiology and Biochemistry 44, 125-131.   DOI
16 Panek, J. A., 2004: Ozone uptake, water loss and carbon exchange dynamics in annually drought-stressed Pinus ponderosa forests: measured trends and parameters for uptake modeling. Tree Physiology 24, 277-290.   DOI   ScienceOn
17 Heath, R. L., and L. Parker, 1968: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125, 189-198.   DOI
18 Hiscox, J. D., and G. F. Israelstam, 1979: A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57, 1332-1334.   DOI
19 Janero, D. R., 1990: Malondialdehyde, and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology and Medicine 9, 515-540.   DOI
20 Jones., M. L. M., F. Hayes, G. Mills, T. H. Sparks, and J. Fuhrer, 2007: Predicting community sensitivity to ozone, using Ellenberg Indicator values. Environmental Pollution 146, 744-753.   DOI
21 Karnosky, D. F., Z. E. Gagnon, R. E. Dickson, M. D. Coleman, E. H. Lee, and J. G. Isebrands, 1996: Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposures of Populus tremuloides clones and seedlings. Canadian Journal of Forest Research 26, 23-37.   DOI
22 Farquhar, G. D., von S. Caemmerer, and J. A. Berry, 1980: A biochemical model of photosynthetic $CO_2$ assimilation in leaves of $C_3$ species. Planta 149, 78-90.   DOI
23 Karnosky, D. F., K. E. Percy, B. Xiang, B. Callan, A. Noormets, B. Mankovska, A. Hopkin, J. Sober, W. Jones, R. E. Dickson, and J. G. Isebrands, 2002: Interacting elevated $CO_2$ and tropospheric $O_3$ predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp. tremuloidae). Global Change Biology 8, 329-338.   DOI
24 Karnosky, D. F., J. M. Skelly, K. E. Percy, and A. H. Chappelka, 2007: Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Environmental Pollution 147, 489-506.   DOI
25 Fares, S., J. H. Park, E. Ormeno, D. R. Gentner, M. McKay, F. Loreto, J. Karlik, and A. H. Goldstein, 2010: Ozone uptake by citrus trees exposed to a range of ozone concentrations. Atmospheric Environment 44, 3404-3412.   DOI
26 Kim, P.-G., and E.-J. Lee, 2001: Ecophysiology of photosynthesis 1: Effects of light intensity and intercellular $CO_2$ pressure on photosynthesis. Korean Journal of Agricultural and Forest Meteorology 3, 126-133. (in Korean with English abstract)   과학기술학회마을
27 Gerosa, G., R. Marzuoli, R. Desotgiu, F. Bussotti, and A. Ballarin-Denti, 2008: Visible leaf injury in young trees of Fagus sylvatica L. and Quercus robur L. in relation to ozone uptake and ozone exposure. An Open-Top Chambers experiment in South Alpine environmental conditions. Environmental Pollution 152, 274-284.   DOI
28 Han, S. H., and D. H. Kim, 2009: Determination of ozone tolerance on environmental tree species using standard index. Korean Journal of Agricultural and Forest Meteorology 11, 3-12. (in Korean with English abstract)   과학기술학회마을   DOI
29 Han, S. H., J. C. Lee, W. Y. Lee, Y. Park, and C. Y. Oh, 2006: Antioxidant characteristics in the leaves of 14 coniferous trees under field conditions. Journal of Korean Forest Society 95, 209-215.   과학기술학회마을
30 Han, S. H., D. H. Kim, K. Y. Lee, J. J. Ku, and P. G. Kim, 2007: Physiological damages and biochemical alleviation to ozone toxicity in five species of genus Acer. Journal of Korean Forest Society 96, 551-560.   과학기술학회마을
31 Alonso, R., S. Elvira, F. J. Castillo, and B. S. Gimeno, 2001: Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant, Cell & Environment 24, 905-916.   DOI
32 Bennet, J. H., E. H. Lee, and E. H. Heggestad, 1984: Biochemical aspect of plant. Gaseous Air Pollutants and Plant Metabolism. Koziol, M.J. and Whatley, F.R. (ed.) Butterworth England. 413-424.
33 Bortier, K., K. Vandermeiren, L. D. Temmerman, and R. Ceulemans, 2001: Growth, photosynthesis and ozone uptake of young beech (Fagus sylvatica L.) in response to different ozone exposures. Trees 15, 75-82.   DOI
34 Coleman, M. D., R. E. Dickson, J. G. Isebrands, and D. F. Karnosky, 1995a: Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone. Tree Physiology 15, 593-604.   DOI   ScienceOn
35 Coleman, M. D., J. G. Isebrands, R. E. Dickson, and D. F. Karnosky, 1995b: Photosynthetic productivity of aspen clones varying in sensitivity to tropospheric ozone. Tree Physiology 15, 585-592.   DOI   ScienceOn
36 Fares, S., F. Loreto, E. Kleist, and J. Wildt, 2008: Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants. Plant Biology 10, 44-54.   DOI
37 Cooper, O. R., D. D. Parrish, A. Stohl, M. Trainer, P. Nedelec, V. Thouret, J. P. Cammas, S. J. Oltmans, B. J. Johnson, D. Tarasick, T. Leblanc, I. S. McDermid, D. Jaffe, R. Gao, J. Stith, T. Ryerson, K. Aikin, T. Campos, A. Weinheimer, and M. A. Avery, 2010: Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature 463, 344-348.   DOI
38 Dizengremel, P., D. L. Thiec, M. Bagard, and Y. Jolivet, 2008: Ozone risk assessment for plants: Central role of metabolism-dependent changes in reducing power. Environmental Pollution 156, 11-15.   DOI