Browse > Article
http://dx.doi.org/10.5532/KJAFM.2009.11.1.003

Determination of Ozone Tolerance on Environmental Tree Species Using Standard Index  

Han, Sim-Hee (Department of Forest Genetic Resources, Korea Forest Research Institute)
Kim, Du-Hyun (Department of Forest Genetic Resources, Korea Forest Research Institute)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.11, no.1, 2009 , pp. 3-12 More about this Journal
Abstract
Ozone tolerance of tree species was determined by standard index of physiological damages and biochemical defense responses under short-term ozone exposure. At the end of 150ppb $O_3$ fumigation, photosynthetic characteristics and antioxidative enzyme activities were analyzed in the leaves of five species(Koelreuteria paniculata, Firmiana simplex, Styrax japonica, Fraxinus rhynchophylla, Viburnum sargentii). Injury index was determined by the effect of ozone on photosynthetic parameters and malondialdehyde(MDA) content, and tolerance index was calculated using the rate of increase in superoxide dismutase(SOD), ascorbate-peroxidase(APX), glutathione reductase(GR) and catalase(CAT) activities. Apparent quantum yield(AQY), carboxylation efficiency(Ce) and photo-respiration rate(PR) decreased in the leaves of five species with increasing ozone exposure time. These parameters were considered as an appropriate indicator for stress evaluation. Antioxidative enzyme activities showed various results depending on the tree species, exposure time, and enzyme types. SOD activity of K. paniculata increased with ozone exposure time, and that of F. rhynchophylla increased only after 6 hours of ozone exposure. CAT activity of $O_3$-exposed F. simplex was lower than the control. Based on standard index, ozone tolerance ability of five species was determined as two tolerant species(F. rhynchophylla > K. paniculata) and three sensitive species(S. japonica > F. simplex > V. sargentii).
Keywords
Physiological damage; Antioxidative enzyme; Photosynthetic parameters; Standard index;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Asada, K., and M. Takahashi, 1987: Production and scavenging of active oxygen in photosynthesis. Photoinhibition: Topics in Photosynthesis IX, D. J. Kyle, C. B. Osmond, and C. J. Arntzen (Eds.), Elsevier, Amsterdam, 227-287
2 Coleman, M. D., J. G. Isebrands, R. E. Dickson, and D. F. Kamosky, 1995: Photosynthetic productivity of aspen clones varying in sensitivity to tropospheric ozone. Tree Physiology 15, 585-592   DOI   PUBMED   ScienceOn
3 Conklin, P. L., and C. Barth, 2004: Ascorbic acid, a familiar small molecule inter-wined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environment 27, 959-970   DOI   ScienceOn
4 Heath, R. L., 1980: Initial events in injury to plants by air pollutants. Annual Review of Plants Physiology 31, 395-431   DOI   ScienceOn
5 Heath, R. L., and L. Parker, 1968: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189-198   DOI   ScienceOn
6 Iglesias, J. D., Á. Calatayud, E. Barreno, E. Primo-Millo, and M. Talon, 2006: Responses of citrus plants to ozone: Leaf biochemistry, antioxidant mechanisms and lipid peroxidation. Plant Physiology and Biochemistry 44, 125-131   DOI   ScienceOn
7 Kim, D. H., S. H. Han, K. Y. Lee, and P. G. Kim, 2008: Interactive effects of ozone and light intensity on Platanus occidentalis L. seedlings. Journal of Korean Forest Society 97, 508-515
8 Kim, P.-G., and E.-J. Lee, 2001: Ecophysiology of photosynthesis 1: Effects of light intensity and intercellular CO2 pressure on photosynthesis. Korean Journal of Agricultural and Forest Meteorology 3, 126-133. (in Korean with English abstract)
9 Kolb, T. E., T. S. Fredericsen, K. C. Steiner, and J. M. Skel, 1997: Issues in scaling tree size and age responses to ozone: a review. Environmental Pollution 98, 195-208   DOI   ScienceOn
10 Lee, J. C., C. Y. Oh, S. H. Han, and P. G. Kim, 2006: Photosynthetic inhibition in leaves of Alianthus altissima under O3 fumigation. Journal of Ecology and Field Biology 29, 41-47   DOI   ScienceOn
11 P$\ddot{a}$$\ddot{a}$kkönen, E., J. Vahala, T. Holopainen, R. Karjalainen, and L. K$\ddot{a}$renlampi, 1996: Growth responses and related biochemical and ultrastructural changes of the photosynthetic apparatus in birch (Betula pendula) saplings exposed to low concentrations of ozone. Tree Physiology 16, 597-605   DOI   PUBMED   ScienceOn
12 Paoletti, E., C. Nali, R. Marabottini, G. Della Rocca, G. Lorenzini, A. R. Paolacci, M. Ciaffi, and M. Badiani, 2003: Strategies of response to ozone in Mediterranean evergreen species. Establishing Ozone Critical Levels II. UNECE Workshop Report. IVL report B 1523, IVL, P.E. Karlsson, G. Séllden, and H. Pleijel (Eds.), Swedish Environmental Research Institute, G$\ddot{o}$teborg, Sweden, 336-343
13 Pell, E. J., C. D. Schlagnhaufer, and R. N. Arteca, 1997: Ozone-induced oxidative stress: Mechanisms of action and reaction. Physiologia Plantarum 100, 264-273   DOI   ScienceOn
14 Ro, H. M., P. G. Kim, I. B. Lee, M. S. Yiem, and S. Y. Woo, 2001: Photosynthetic characteristics and growth responses of dwarf apple (Malus domestica Borkh. cv. Fuji) saplings after 3 years of exposure to elevated atmospheric carbon dioxide concentration and temperature. Trees 15, 195-203   DOI   ScienceOn
15 Sheng, Y., G. K. Podila, and D. F. Karnosky, 1997: Differences in O3-induced superoxide dismutase and glutathione antioxidant expression in O3 tolerant and sensitive trembling aspen (Populus tremuloides Michx.) clones. Forest Genetics 4, 25-33
16 Mehlhorn, H., J. M. O'Shea, and A. R. Wellburn, 1990: Electron spin resonance evidence for deformation of free radicals in plants exposed to ozone. Physiologia Plantarum 79, 377-383   DOI   ScienceOn
17 Bennet, J. H., E. H. Lee, and H. E. Heggestad, 1984: Biochemical aspect of plant. Gaseous Air Pollutants and Plant Metabolism, Koziol, M. J., and F. R. Whatley (Eds.), Butterworth England, 413-424
18 Ranieri, A., G. D'Urso, C. Nali, G. Lorenzini, and G. F. Soldatini, 1996: Ozone stimulates apoplastic antioxidant systems in pumpkin leaves. Physiologia Plantarum 97, 381-387   DOI   ScienceOn
19 Nie G. Y., M. Tomasevic, and N. R. Baker. 1993: Effects of ozone on the photosynthetic apparatus and leaf proteins during leaf development in wheat. Plant, Cell and Environment 16, 643-651   DOI   ScienceOn
20 $\ddot{O}$ncel, I., E. Yurdakulol, Y. Keles, L. Kurtm, and A. Yildiz, 2004: Role of antioxidant defence system and biochemical adaptation on stress tolerance of high mountain and steppe plants. Acta Oecologia 26, 211-218   DOI   ScienceOn
21 Noctor, G., and C. H. Foyer, 1998: Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49, 249-279   DOI   ScienceOn
22 Han, S. H., J. C. Lee, W. Y. Lee, Y. Park, and C. Y. Oh, 2006: Antioxidant characteristics and phytoremediation potential of 27 texa of roadside trees at industrial complex area. Korean Journal of Agricultural and Forest Meteorology 8, 159-168
23 Lee, J. C., S. H. Han, C. S. Kim, and S. S. Jang, 2002: Visible foliar injuries and growth responses of four Betula sp. exposed to ozone. Korean Journal of Agricultural and Forest Meteorology 4, 29-37. (in Korean with English abstract)   과학기술학회마을   ScienceOn
24 Farquhar, G. D., von S. Caemmerer, and J. A. Berry, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78-90   DOI   ScienceOn
25 Calatayud, A., J. W. Ramirez, D. J. Iglesias, and E. Barreno, 2002: Effects of ozone on photosynthetic CO2 exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiologia Plantarum 116, 308-316   DOI   ScienceOn
26 Pell, E. J., N. A. Eckardt, and R. E. Glick, 1994: Biochemical and molecular basis for impairment of photosynthetic potential. Photosynthesis Research 39, 453-462   DOI   ScienceOn
27 Oksanen, E., G. Amores, H. Kokko, J. M. Santamaria, and L. Kärenlampi, 2001: Genotypic variation in growth and physiological responses of Finish hybrid aspen(Populus tremuloides × P. tremula) to elevated tropospheric ozone concentration. Tree Physiology, 21, 1171-1181   DOI   PUBMED   ScienceOn
28 Han, S. H., D. H. Kim, K. Y. Lee, J. J. Ku, and P. G. Kim, 2007: Physiological damages and biochemical alleviation to ozone toxicity in five species of genus Acer. Journal of Korean Forest Society 96, 551-560
29 Yoshida, M., Y. Nouchi, and S. Toyama, 1994: Studies on the role of active oxygen in ozone in injury to plant cells. I. Generation of active oxygen in rice protoplast exposed to ozone. Plant Science 95, 197-205   DOI   ScienceOn
30 Janero, D. R., 1990: Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 9, 515-40   DOI   ScienceOn
31 Ministry of Environment, 2008: Annual Report of Ambient Air Quality in Korea. 393pp
32 Pye, J. M., 1988: Impact of ozone on the growth and yield of trees: a review. Journal of Environmental Quality 17, 347-360   DOI
33 Caemmerer, S. von, and G. D. Farquhar, 1981: Some relationships between the biochemistry of photosynthesis and the gas exchanges of leaves. Planta 153, 376-387   DOI   ScienceOn
34 Oksanen, E., and M. Rousi, 2001: Differences of Betula origins in ozone sensitivity based on open-filed experiment over two growing seasons. Canadian Journal of Forest Research 31, 804-811
35 Bortier, K., K. Vandermeiren, L. D. Temmerman, and R. Ceulemans, 2001: Growth, photosynthesis and ozone uptake of young beech (Fagus sylvatica L.) in response to different ozone exposures. Trees 15, 75-82   DOI   ScienceOn
36 Lee, J. C., C. Y. Oh, S. H. Han, and P. G. Kim, 2005: Changes on photosynthesis and SOD activity in Platanus orientalis and Liriodendron tulipifera according to ozone exposing period. Korean Journal of Agricultural and Forest Meteorology 7, 156-163 (in Korean with English abstract)   과학기술학회마을   ScienceOn