Browse > Article
http://dx.doi.org/10.5656/KSAE.2012.06.0.035

Comparative Analysis of Benzylideneacetone-derived Compounds on Insect Immunosuppressive and Antimicrobial Activities  

Seo, Sam-Yeol (Department of Bioresource Sciences, Andong National University)
Chun, Won-Su (Department of Bioresource Sciences, Andong National University)
Hong, Yong-Pyo (Department of Applied Chemistry, Andong National University)
Yi, Young-Keun (Department of Bioresource Sciences, Andong National University)
Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.51, no.3, 2012 , pp. 245-253 More about this Journal
Abstract
Benzylinedeneacetone (BZA) is a bacterial metabolite which is synthesized by at least two entomopathogenic bacteria, namely Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. It has been shown to possess inhibitory effects on insect cellular and humoral immune responses as well as antimicrobial activities against various species of bacteria and fungi. However, its relatively high phytotoxicity, and nonsystematic effect have thus far prevented its development into an optimal pesticide. This study screened five different BZA derivatives in order to select an optimal compound, which would have relatively high solubility and low phytotoxicity while retaining sufficient degrees of the immunosuppressive and antimicrobial activities associated with BZA. Hydroxylation of the benzene ring of BZA was found to significantly suppress its immunosuppressive and antimicrobial activities. Transformation of the ketone of BZA by carboxylation also suppressed the inhibitory activities. However, a shortening of the aliphatic chain of BZA into acetate form (4-hydroxyphenylacetic acid: HPA) did not decrease the inhibitory activity. HPA also showed much less phytotoxicity against the hot pepper plant Capsicum annuum, when compared to BZA. This study identified an optimal BZA derivative, which exhibited relatively little phytotoxicity, but retained a high degree of inhibitory activity to suppress insect immune responses and antimicrobial activities against plant pathogens.
Keywords
Benzylideneacetone; Immune; Antimicrobial activity; Phytotoxicity; Plutella xylostella;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Radvanyi, F., L. Jordan, F. Russo-Marie and C. Bon. 1989. A sensitive and continuous fluorometric assay for phospholipase $A_{2}$2 using pyrene-labeled phospholipids in the presence of serum albumin. Anal. Biochem. 177: 103-109.   DOI   ScienceOn
2 Richards, G.R. and H.B. Goodrich-Blair. 2009. Masters of conquest and pillage: Xenorhabdus nematophila global regulators control transitions from virulence to nutrient acquisition. Cell Microbiol. 11: 1025-1033.   DOI
3 Russel, A.D. and J.R. Furr. 1996. Biocides: mechanisms of antifungal action and fungal resistance. Sci. Prog. 79: 27-48.
4 Jenkins, J.I. and D.H. Dean. 2000. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. pp. 33-54. In Genetic engineering: principles and methods, vol. 22. ed. by K. Setlow. Plenum, New York.
5 Jeon, M., W. Cheon. Y. Kim, Y.P. Hong and Y. Yi. 2012. Control effects of indole isolated from Xenorhabdus nematophila K1 on the diseases of red pepper. Res. Plant Dis. 18: 17-23.   DOI   ScienceOn
6 Ji, D., Y. Yi, G.H. Kang, Y.H. Choi, P. Kim, N.I. Baek and Y. Kim. 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239: 241-248.   DOI   ScienceOn
7 Jiang, H. and M.R. Kanost. 2000. The clip-domain family of serine proteinases in arthropods. Insect Biochem. Mol. Biol. 30: 95-105.   DOI   ScienceOn
8 Jung, S. and Y. Kim. 2006. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35: 1584-1589.   DOI   ScienceOn
9 Kang, S., S. Han and Y. Kim. 2004. Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. J. Asia Pac. Entomol. 7: 331-337.   DOI
10 Ko, H.S., R.D. Jin, H.B. Krishnan, S.B. Lee and K.Y. Kim. 2009. Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic aid and several lytic enzymes. Curr. Microbiol. 59: 608-615.   DOI
11 Mao, S., S.J. Lee, H. Hwangbo, Y.W. Kim, K.H. Park, G.S. Cha, R.D. Park and K.Y. Kim. 2006. Isolation and characterization of antifungal substances from Burkholderia sp. culture broth. Curr. Microbiol. 53: 358-364.   DOI
12 Akhurst, R.J. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303-309.
13 Broderick, N.A., K.F. Raffa and J. Handelsman. 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA. 103: 15196-15199.   DOI   ScienceOn
14 Carton, Y., F. Frey, D.W. Stanley, E. Vass and J.N. Antony. 2002. Dexamethasone inhibition of the cellular immune response of Drosophila melanogaster against a parasitoid. J. Parasitol. 88: 405-407.   DOI
15 Hoffman, C., H. Vanderbruggen, H. Hofte, J. Van Rie, S. Jansens and H. Van Mellaert. 1988. Specificity of Bacillus thuringiensis delta -endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85: 7844-7848.   DOI   ScienceOn
16 Cho, S. and Y. Kim. 2004. Hemocyte apoptosis induced by entomo -pathogenic bacteria, Xenorhabdus and Photorhabdus, in Bombyx mori. J. Asia Pac. Entomol. 7: 195-200.   DOI   ScienceOn
17 Gill, S.S., E.A. Cowles and P.V. Pietrantonio. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636.   DOI   ScienceOn
18 Goh, H.G., S.G. Lee, B P. Lee, G.M. Choi and J.H. Kim. 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua. Kor. J. Appl. Entomol. 29: 180-183.
19 Zhang, X., N.B. Griko, S.K. Corona and L.A. Bulla, Jr. 2008. Enhanced exocytosis of the receptor BT-$R_{1}$ induced by the Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death. Comp. Biochem. Physiol. B 149: 581-588.   DOI
20 Yajima, M., M. Takada, N. Takahashi, H. Kikuchi, S. Natori, Y. Oshima and S. Kurata. 2003. A newly established in vitro culture using transgenic Drosophila reveals functional coupling between the phospholipase $A_{2}$-generated fatty acid cascade and lipopolysaccharide- dependent activation of the immune deficiency (imd) pathway in insect immunity. Biochem. J. 37: 205-210.
21 Shrestha, S. and Y. Kim. 2009. Biochemical characteristics of immune -associated phospholipase $A_{2}$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47: 774-782.   과학기술학회마을   DOI
22 Seo, S.Y., M.Y. Jeon, W.S. Chun, S.H. Lee, J.A. Seo, Y.G. Yi, Y.P. Hong and Y. Kim. 2011. Structure-activity analysis of benzylideneacetone for effective control of plant pests. Kor. J. Appl. Entomol. 50: 107-113.   DOI
23 Seo, S.Y., S.H. Lee, Y.P. Hong and Y. Kim. 2012. Chemical identification and biological characterization of phospholipase A2 inhibitors synthesized by entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78: 3816-3823.   DOI
24 Shrestha, S. and Y. Kim. 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Biol. 38: 99-112.   DOI   ScienceOn
25 Shrestha, S., D. Stanley and Y. Kim. 2011. $PGE_{2}$ induces oenocytoid cell lysis a G protein-coupled receptor in the beet armyworm, Spodoptera exigua. J. Insect Physiol. 57: 1568-1576.   DOI
26 Merchant, D., R.L. Ertl, S.I. Rennard, D.W. Stanley and J.S. Miller. 2008. Eicosanoids mediate insect hemocyte migration. J. Insect Physiol. 54: 215-221.   DOI
27 Srikanth, K., J. Park, D.W. Stanley and Y. Kim. 2011. Plasmatocyte -spreading peptide influences hemocyte behavior via eicosanoids. Arch. Insect Biochem. Physiol. 78: 145-160.   DOI
28 Stanley, D. and Y. Kim. 2011. Prostaglandins and their receptors in insect biology. Front. Endocrinol. 2:105. doi: 10.3389/fendo.2011. 00105.
29 SAS Institute, Inc. 1989. SAS/STAT user's guide, release 6.03, Ed. Cary, N.C.
30 Miller, J.S. 2005. Eicosanoids influence in vitro elongation of plasmatocytes from the tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol. 59: 42-51.   DOI
31 Miller, J.S., T. Nguyen and D.W. Stanley-Samuelson. 1994. Eicosanoids mediate insect nodulation responses to bacterial infections. Proc. Natl. Acad. Sci. USA. 91: 12418-12422.   DOI   ScienceOn
32 Ohtani, K., S. Fujioka, T. Kawano, A. Shimada and Y. Kimura. 2011. Nematicidal activities of 4-hydroxyphenylacetic acid and oidiolactone D produced by the fungus Oidiodendron sp. Z. Naturforsch. C. 66: 31-34.   DOI
33 Park, S.J., M.H. Jun, W. Chun, J.A. Seo, Y. Yi, and Y. Kim. 2010. Control effects of benzylideneacetone isolated from Xenorhabdus nematophila K1 on the disease of redpepper plants. Res. Plant Dis. 16: 170-175.   DOI   ScienceOn
34 Park, Y. and Y. Kim. 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46: 1469-1476.   DOI   ScienceOn