• Title/Summary/Keyword: carbonation test

Search Result 227, Processing Time 0.025 seconds

Properties of Polymer Cement Mortars under Combined Cures (복합양생에 의한 폴리머 시멘트 모르타르의 성질)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.667-675
    • /
    • 2006
  • Concrete is much more easily damaged by various parameters than by the only one and performance reducing mechanism grows more complicated in that condition. In addition, the factors which really act in concrete structure tend to be activated in turn and the degradation of concrete is very rapidly progressed. The purpose of this study is to evaluate the properties of polymer cement mortars under combined cures. The polymer cement mortars are prepared with various polymer types, polymer-cement ratios and cement-fine aggregate ratio, and tested for compressive and flexural strengths, accelerated carbonation, chloride ion penetration and acid resistance test, and freezing-thawing test. The properties of polymer cement mortars under combined cures is discussed. From the test results, polymer cement mortars have superior strengths compared with plain cement mortar under combined cures. The strengths of polymer cement mortars are markedly increased at curing condition II and V, however strengths are not improved at curing condition I and IV irregardless of polymer types. The carbonation and chloride ion penetration depths of polymer cement mortars tend to decrease in curing conditions, III-C, IV-B, V-A order, and decrease with increasing polymer cement ratios. It is concluded that polymer cement ratio of 10 to 15% are considered optimum for the preparation of such polymer cement mortars.

An Empirical Estimation Procedure of Concrete Compressive Strength Based on the In-Situ Nondestructive Tests Result of the Existing Bridges (공용중 교량 비파괴시험 결과에 기반한 경험적 콘크리트 압축강도 추정방법의 제안)

  • Oh, Hong-Seob;Oh, Kwang-Chin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.111-119
    • /
    • 2016
  • Rebound hammer test, SonReb method and concrete core test are most useful testing methods for estimate the concrete compressive strength of deteriorated concrete structures. But the accuracy of the NDE results on the existing structures could be reduced by the effects of the uncertainty of nondestructive test methods, material effects by aging and carbonation, and mechanical damage by drilling of core. In this study, empirical procedure for verifying the in-situ compressive strength of concrete is suggested through the probabilistic analysis on the 268 data of rebound and ultra-pulse velocity and core strengths obtained from 106 bridges. To enhance the accuracy of predicted concrete strength, the coefficients of core strength, and surface hardness caused by ageing or carbonation was adopted. From the results, the proposed equation by KISTEC and the estimation procedures proposed by authors is reliable than previously suggested equation and correction coefficient.

Modeling of Gas Permeability Coefficient for Cementitious Materials with Relation to Water Permeability Coefficient (시멘트계 재료의 기체 투기계수 해석 및 투수계수와의 상관성 연구)

  • Yoon, In-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.207-217
    • /
    • 2016
  • Permeability can not be expressed as a function of porosity alone, it depends on the porosity, pore size and distribution, and tortuosity of pore channels in concrete. There has been considerable interest in the relationship between microstructure and transport in cementitious materials, however, it is very rare to deal with the theoretical study on gas permeability coefficient in connection with carbonation of concrete and the effect of volumetric fraction of cement paste or aggregate on the permeability coefficient. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on the permeability coefficient of concrete. In this study, fundamental approach to compute gas permeability of (non)carbonated concrete is suggested. For several compositions of cement pastes, the gas permeability coefficient was calculated with the analytical formulation, followed by a microstructure-based model. For carbonated concrete, reduced porosity was calculated and this was used for calculating the gas permeability coefficeint. As the result of calculation of gas permeability for carbonated concrete, carbonation leaded to the significant reduction of gas permeability coefficient and this was obvious for concrete with high w/c ratio. Meanwhile, the relationship between gas permeability and water permeability has a linear function for cement paste based on Klinkenberg effect, however, which is not effective for concrete. For the evidence of the modeling, YOON's test was accomplished and these results were compared to each other.

Influence of Carbonation for Chloride Diffusion in Concrete (탄산화 복합환경시 염소이온 확산에 관한 연구)

  • Oh Byung-Hwan;Lee Sung-Kyu;Lee Myung-Kue;Jung Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.179-189
    • /
    • 2005
  • Corrosion of steel due to chloride attack is a major concern in reinforced concrete structures which are located in the marine environments. In this case, Fick's 2nd law has been used for the prediction of chloride diffusion related with service life of concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the influences of carbonation to chloride attack in concrete structures and to investigate the validity of Fick's law to chloride attack combined carbonation. The test results indicate that the chloride ion profiles from Fick's law using the diffusion coefficient of immersion tests is not reflected the effect of separation of chloride ions in carbonation region but valid in sound region in case of combined action. On the other hand, the chloride ion profiles from Fick's law using the diffusion coefficient of Tang and Nilsson's method coincide with test results under dry-wet condition but not under combined condition. The results of present study may Imply that the new method for the measurement of diffusion coefficient is required to predict the chloride ion profiles in case of combined action at early.

Durability Evaluation of Concrete Using Fine Sand of Nakdong-River

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.265-271
    • /
    • 2014
  • It is strongly needed to investigate the fine sand as an alternative fine aggregate of well-graded river sand because the fine sand which is being enormously distributed in the midstream and downstream of Nakdong-River in Korea has a poor grading but good quality as a fine aggregate for concrete. Thus, the purpose of this experimental research is to evaluate the durability of concrete using the fine sand to utilize it actively as a fine aggregate. For this purpose, the concrete specimens using different fine sand were made for the specified concrete strength of 35MPa, and then their durability such as the resistance to freezing and thawing and carbonation, and drying shrinkage were evaluated. It was observed from the test results that the resistance to freezing and thawing and carbonation of concrete using the fine sand was similar to that of concrete using reference sand, but the drying shrinkage of concrete using the fine sand with small fineness was comparatively lager than that of concrete using reference sand.

Reliability Evaluation of Accelerated Carbonation Results According to Carbon Dioxide Concentration (이산화탄소 농도에 따른 촉진 탄산화 결과의 신뢰도 평가)

  • Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.166-167
    • /
    • 2022
  • The International Energy Agency(IEA) recommends that intergovernmental agreements reduce CO2 emissions by 2050 to about 50% in 2005 in its report. To realize these demands, it is suggested to actively utilize energy efficiency improvement technology, renewable energy, nuclear power, carbon dioxide capture & storage technology (CCS). In the field of building materials and cement, mineral carbonization technology is widely used. Inorganic by-products applicable to greenhouse gas storage include waste concrete, slag, coal ash, and gypsum. If the Mineral Carbonation Act is used, it is expected that about 12 million tons of greenhouse gases can be immobilized every year. Greenhouse gas immobilization using cement hydrate can be immobilized by injecting carbon dioxide into the hydrated products C-S-H, and Ca(OH)2. In the case of immobilization through concrete carbonization, a carbon dioxide promotion test is used, which is often different from the actual carbon dioxide carbonization reaction. If the external carbon dioxide concentration is abnormally higher than the reality, it is thought that it will be different from the actual reaction. In this study, the carbonation phenomenon according to the concentration and identification of the carbon dioxide reaction mechanism of cement hydrate was to be considered.

  • PDF

Properties of Matrix According to the Replacement Ratio of Portland Cement-based Carbonation Sluge (시멘트 기반 탄화슬러지 치환율에 따른 경화체의 특성)

  • Kang, Yong-Mo;Lee, Hye-Eun;Lee, Sang Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.189-190
    • /
    • 2021
  • Recently, the spread of intense social distancing and untact culture due to COVID-19 has increased the time spent indoors. In addition, according to the International Cancer Institute, fine dust was classified as a first-class carcinogen, a substance found to be carcinogenic, such as asbestos and benzene. As a result, interest in indoor air quality is increasing, and many studies are underway to reduce air pollutants. This study is a basic experiment of a board made to improve indoor air quality. The basic characteristics of the board, flexural strength and compressive strength, are analyzed and the results of the test are as follows. Experiments have shown that flexural strength and compressive strength tend to decrease as the replacement rate of hydrocarbons increases. It is believed that the strength of the sludge has decreased due to the increase in internal voids due to the increase in non-surface area, volume and diameter of microfiber as it undergoes the carbonation process. In addition, it is believed that the amount of moisture needed for curing during the mixing process was reduced due to the absorption of hydrocarbons.

  • PDF

A Study on the pH Reduction of Cement Concrete with Various Mixing Conditions (시멘트 콘크리트의 배합조건에 따른 pH 저감에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.79-85
    • /
    • 2008
  • The purpose of this study is to evaluate the mix design of pH reducing cement concrete which can be used for environment-friendly concrete. Cement pastes and concretes are prepared with water-binder ratios and various admixtures such as blast-furnace slag, fly ash and recycled cement, and tested for compressive strength and pH. pH is measured through pore solution expressed from hydrated cement paste by special apparatus. From the test results, regardless of water-binder ratio, The pH of expressed pore solution from hydrated cement paste which is made of ordinary portland cement with blast-furnace slag, fly ash is decreased with increasing of admixtures content, and compressive strength is also slightly improved. The compressive strength of cement paste made of recycled cement which is burnt at $1000^{\circ}C$, for 2 hours is considerably increased compared with that of none-burnt recycled cement due to restoration of hydraulic property, but pH is a little higher. Porous concrete with ordinary portland cement has high pH in the range of 12.22 to 12.59, however, that is reduced to the range of 8.95 to 10.39 by carbonation at the surface of porous concrete. The pH reduction of porous concrete is possible by various admixture addition, however their degrees are very slight. Therefore, to reduce the pH considerably, carbonation method of porous concrete is better in pH reduction methods for plant survival condition of pH of 9.0 or less. In this study, it is apparent that pH for the environment-friendly porous concrete products used in the construction field can be suppressed by this carbonation method and various admixtures addition.

Influence of Carbonation on the Chloride Diffusion in Concrete (탄산화 현상이 콘크리트 중의 염소이온 확산에 미치는 영향 연구)

  • Oh, Byung-Hwan;Lee, Sung-Kyu;Lee, Myung-Kue;Jung, Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.829-839
    • /
    • 2003
  • Recently, the corrosion of reinforced concrete structures has received great attention related with the deterioration of sea-side structures, such as new airport, bridges, and nuclear power plants. In this regards, many studies have been done on the chloride attack in concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the influences of carbonation to chloride attack in concrete structures. The test results indicate that the chloride penetration is more pronounced than the case of single chloride attack when the carbonation process is combined with the chloride attack. It is supposed that the chloride ion concentration of carbonation region is higher than the sound region because of the separation of fixed salts. Though the use of fly ash pronounces the chloride ion concentration in surface, amounts of chloride ion penetration into deep region decreases with the use of fly ash. The present study allows more realistic assessment of durability for such concrete structures which are subjected to combined attacks of both chlorides and carbonation but the future studies for combined environment will assure the precise assessment.

A Study on the Strength, Drying Shrinkage and Carbonation Properties of Lightweight Aggregate Mortar with Recycling Water (회수수를 사용한 경량골재 모르타르의 강도, 건조수축 및 중성화 특성에 관한 연구)

  • Oh, Tae-Gue;Kim, Ji-Hwan;Bae, Sung-Ho;Choi, Se-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.391-397
    • /
    • 2020
  • This study is to compare and analyze the strength, drying shrinkage and carbonation properties of lightweight aggregate mortar using recycling water as prewetting water and mixing water. The flow, compressive strength, split tensile strength, drying shrinkage and carbonation depth of lightweight aggregate mortar with recycling water were measured. As test results, the mortar flow was similar in all mixes regardless of the recycling water content. The compresseive strength of the RW5 mix with 5% recycling water as prewetting water and mixing water was the highest value, about 53.9 MPa after 28 days. In addition, the tensile strength of lightweight mortar was about 3.4 to 3.8 MPa, indicating 7 to 9% of the compressive strength value regardless of recycling water content. In the case of drying shrinkage, the RW2.5 mix using 2.5% recycling water showed the lowest shrinkage rate as about 0.107% at 56 days. The drying shrinkage of the plain mix without recycling water was relatively higher than the RW2.5 and RW5 mix. The RW5 mix showed lowest carbonation depth compared to other mixes. In this study, the RW5 lightweight aggregate mortar with 5% recycling water exhibits excellent compressive strength and carbonation resistance. Therefore, it is considered that if the recycling water, a by-product of the concrete industry, is properly used as prewetting water and mixing water of lightweight mortar and concrete, it will be possible to increase the recycling rate of the by-product and contribute to improve the property of lightweitht aggregate mortar and concrete.