DOI QR코드

DOI QR Code

An Empirical Estimation Procedure of Concrete Compressive Strength Based on the In-Situ Nondestructive Tests Result of the Existing Bridges

공용중 교량 비파괴시험 결과에 기반한 경험적 콘크리트 압축강도 추정방법의 제안

  • 오홍섭 (경남과학기술대학교 토목공학과) ;
  • 오광진 (한국시설안전공단 건설안전본부 건설평가실)
  • Received : 2016.03.23
  • Accepted : 2016.04.20
  • Published : 2016.07.01

Abstract

Rebound hammer test, SonReb method and concrete core test are most useful testing methods for estimate the concrete compressive strength of deteriorated concrete structures. But the accuracy of the NDE results on the existing structures could be reduced by the effects of the uncertainty of nondestructive test methods, material effects by aging and carbonation, and mechanical damage by drilling of core. In this study, empirical procedure for verifying the in-situ compressive strength of concrete is suggested through the probabilistic analysis on the 268 data of rebound and ultra-pulse velocity and core strengths obtained from 106 bridges. To enhance the accuracy of predicted concrete strength, the coefficients of core strength, and surface hardness caused by ageing or carbonation was adopted. From the results, the proposed equation by KISTEC and the estimation procedures proposed by authors is reliable than previously suggested equation and correction coefficient.

반발경도법과 복합법에 의한 현장비파괴 시험과 코어강도의 평가는 노후화된 구조물의 상태평가를 위하여 가장 효과적인 방법이다. 그러나 비파괴 시험방법의 불확실성과 함께 재료의 재령, 탄산화와 코어채취시의 물리적 손상 등에 의하여 현장강도 추정시의 정밀도를 낮추는 요인으로 작용하게 된다. 본 연구에서는 106개 교량에서 수집된 268개의 비파괴시험결과와 코어압축강도 결과를 사용하여 현장 압축강도 추정방법을 제시하고자 하였다. 코어강도의 신뢰도를 높이기 위하여 수정계수를 적용하고자 하였으며, 노후콘크리트의 반발경도에 영향을 미치는 탄산화 또는 재령에 의한 수정계수를 적용하여 현장 강도 추정결과의 신뢰도를 높이고자 하였다. KISTEC의 제안 추정식과 수정계수를 적용한 경우 기존의 추정방법과 비교하여 신뢰도가 높아지는 것으로 나타났다.

Keywords

References

  1. ACI Committee 214.4-03 (2013), Guide for Obtaining Cores and Interpreting Compressive Strength Results, American Concrete Institute, Farmington Hills, Michigan, 16pp.
  2. ACI Committee 318 (2005), Building Code Requirements for Structural Concrete(ACI 318-05) and commentary. American Concrete Institute.
  3. AIJ (1983), Manual of Nondestructive Tests Methods for the Evaluation of Concrete Strength, Architectural Institute of Japan.
  4. Breccolotti, M., Bonfigli, M. F., and Materazzi, A. L. (2013), Influence of Carbonation Depth on Concrete Strength Evaluation Carried Out using the SonReb Method. NDT & E International, 59, 96-104. https://doi.org/10.1016/j.ndteint.2013.06.002
  5. Chang, C. F., and Chen, J. W. (2006), The Experimental Investigation of Concrete Carbonation Depth, Cement and Concrete Research, 36(9), 1760-1767. https://doi.org/10.1016/j.cemconres.2004.07.025
  6. Del Rio, L. M., Jimenez, A., Lopez, F., Rosa, F. J., Rufo, M. M., and Paniagua, J. M. (2004), Characterization and Hardening of Concrete with Ultrasonic Testing, Ultrasonics, 42(1), 527-530. https://doi.org/10.1016/j.ultras.2004.01.053
  7. Fiore, A., Porco, F., Uva, G., and Mezzina, M. (2013), On the Dispersion of Data Collected by in Situ Diagnostic of the Existing Concrete, Construction and Building Materials, 47, 208-217. https://doi.org/10.1016/j.conbuildmat.2013.05.001
  8. Japan Society for Testing and Materials (1958), Guideline for Evaluation of Compressive Strength of Concrete by Schmidt Hammer(draft), Material Testing, 7-59, 426-430(in Japan). https://doi.org/10.2472/jsms1952.7.426
  9. Jerga, J. (2004), Physico-mechanical Properties of Carbonated Concrete, Construction and Building Materials, 18(9), 645-652. https://doi.org/10.1016/j.conbuildmat.2004.04.029
  10. KCI (2012), Concrete Structural Design Code, Korea Concrete Institute.
  11. Kheder, G. F. (1999), A Two Stage Procedure for Assessment of in Situ Concrete Strength using Combined Non-Destructive Testing, Materials and Structures, 32(6), 410-417. https://doi.org/10.1007/BF02482712
  12. Khoury, S., Aliabdo, A. A. H., and Ghazy, A. (2014), Reliability of Core Test-Critical Assessment and Proposed New Approach, Alexandria Engineering Journal, 53(1), 169-184. https://doi.org/10.1016/j.aej.2013.12.005
  13. Kim, J.-K., Kim, C.-Y., Yi, S.-T., and Lee, Y. (2009), Effect of Carbonation on the Rebound Number and Compressive Strength of Concrete, Cement and Concrete Composite, 31, 139-44. https://doi.org/10.1016/j.cemconcomp.2008.10.001
  14. Kim, M. W., Oh, H., and Oh, K. C. (2016), Estimating the Compressive Strength of High-Strength Concrete Using Surface Rebound Value and Ultrasonic Velocity, Journal of KSMI, 20(2), 1-9.
  15. Kim, H. K., and Kim, S. B. (2010), Service Life Prediction and Carbonation of Bridge Structures According to the Environmental Conditions, Journal of KSMI, 14(4), 126-32.
  16. Kim, M. S., Yun, Y. H., Kim, J. K., Kwon, Y. W., and Lee, S. S. (2002), Estimation of Aging Effects on Determination of Compressive Strength of Concrete by Non-Destructive Tests, J Korea Concr Inst, 14(5), 782-8. https://doi.org/10.4334/JKCI.2002.14.5.782
  17. KISTEC (2012), 3rd Master Plan for Safety and Maintenance of Infrastructures, KISTEC.
  18. KISTEC (2014), A Development of Strength Estimation Technique for the High Strength Concrete.
  19. Korea Research Institute of Standards and Science (1999), Standardization for Concrete Compressive Strength Estimation Equation by Experiment for Specimen and Wall Type Structure, Research Report(in Korean).
  20. Lee, C. S., Seol, J. S., and Yoon, I. S. (2000), Current Status on Durability of 140 RC Bridges in Seoul Metropolitan Area, Journal of KSMI, 4(3),161-168.
  21. Lee, Y. J., Kim, Y. H., and Lee, Y. Y. (2003), Current Status on the Chloride and Carbonation of Train Structures in the East, Journal of KSMI, 7(1), 259-266.
  22. Lim, H. B., Park, C. H., and Shin, J. I. (2004), Current Status on the Carbonation of Highway Bridges, Conference proceeding of KSCE, 3677-3682.
  23. LNEC E-465 (2005), Concrete Prescriptive Methodology to Estimate Concrete Properties to Achieve the Design Service Life Under Environment Conditions XC or XS., National Laboratory of Civiel Engineering, Lisbone, Portugal.
  24. Monteiro, I., Branco, F. A., De Brito, J., and Neves, R. (2012), Statistical Analysis of the Carbonation Coefficient in Open Air Concrete Structures, Construction and Building Materials, 29, 263-269. https://doi.org/10.1016/j.conbuildmat.2011.10.028
  25. RILEM CNDT-Committee (1980), RILEM Tentative Recommendations for In-situ Concrete Strength Determination by Non-Destructive Combined Methods(First draft), May, 1980.
  26. Szilagyi, K., Borosnyoi, A., and Zsigovics, I. (2014), Extensive Statistical Analysis of the Variability of Concrete Rebound Hardness Based on a Large Database of 60years Experience, Construction and Building Materials, 53, 333-347. https://doi.org/10.1016/j.conbuildmat.2013.11.113
  27. Tanigawa, Y., Baba, K., and Mori, H., (1984), Estimation of Concrete Strength by Combined Nondestructive Testing Method, ACI Journal, 82, 57-76.
  28. Tuutti, K. (1982), Corrosion of Steel in Concrete : CBI Research 4, Swedish Cement and Concrete Research Institute, Stockholm, p82.

Cited by

  1. Comparison Study on Nondestructive Strength Equation Based on Probability for Bridges vol.20, pp.3, 2018, https://doi.org/10.7855/IJHE.2018.20.3.039
  2. Cement strength prediction using cloud-based machine learning techniques vol.5, pp.4, 2016, https://doi.org/10.1080/24705314.2020.1783122