• Title/Summary/Keyword: carbonation test

Search Result 227, Processing Time 0.03 seconds

Non-destructive assessment of carbonation in concrete using the ultrasonic test: Influenced parameters

  • Javad Royaei;Fatemeh Nouban;Kabir Sadeghi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.301-308
    • /
    • 2024
  • Concrete carbonation is a continuous and slow process from the outside to the inside, in which its penetration slows down with the increased depth of carbonation. In this paper, the results of the evaluation of the measurement of concrete carbonation depth using a non-destructive ultrasonic testing method are presented. According to the results, the relative nonlinear parameter caused more sensitivity in carbonation changes compared to Rayleigh's fuzzy velocity. Thus, the acoustic nonlinear parameter is expected to be applied as a quantitative index to recognize carbonation effects. In this research, combo diagrams were developed based on the results of ultrasonic testing and the experiment to determine carbonation depth using a phenolphthalein solution, which could be considered as instructions in the projects involving non-destructive ultrasonic test methods. The minimum and maximum accuracy of this method were 89% and 97%, respectively, which is a reasonable range for operational projects. From the analysis performed, some useful expressions are found by applying the regression analysis for the nonlinearity index and the carbonation penetration depth values as a guideline.

Study on the Cargonation Properties of Fly Ash Concrete using a Vacuum Instrument

  • Jung, Sang-Hwa;Yoo, Sung-Won;Chae, Seong-Tae
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.186-192
    • /
    • 2007
  • Carbonation is one of the most important factors causing the corrosion of reinforcement concrete. Nevertheless, experimental studies on the concrete carbonation have not been carried out sufficiently because of the slow process of carbonation process. Therefore, this study adopts an experimental system exploiting a vacuum instrument that has been recently developed to accelerate carbonation instead of existing experimental system to conduct rapid carbonation tests on Portland cement and fly-ash cement concretes. Test results revealed that, compared to water-cement ratio of 40%, the carbonation depth increases from 103% to 138% for an increase of water-cement ratio from 45% to 60%. These results are larger than the carbonation depths obtained by mathematical model, and such difference is increasing with larger water-cement ratios. The results also indicated that larger fly-ash contents lead to sharp increase of the carbonation depth, which is in agreement with previous experimental researches. The adoption of the new accelerated carbonation test system enabled to shorten effectively the time required to produce experimental data compared to the existing carbonation test method. The experimental data obtained in this study together with ongoing acquisition of data using the new carbonation test method are expected to contribute in the understanding of the carbonation process of concrete structures in Korea.

Carbonation depth estimation in reinforced concrete structures using revised empirical model and oxygen permeability index

  • Chandra Harshitha;Bhaskar Sangoju;Ramesh Gopal
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.241-252
    • /
    • 2023
  • Corrosion of rebar is one of the major deteriorating mechanisms that affect the durability of reinforced concrete (RC) structures. The increase in CO2 concentration in the atmosphere leads to early carbonation and deterioration due to corrosion in RC structures. In the present study, an attempt has been made to modify the existing carbonation depth prediction empirical model. The modified empirical model is verified from the carbonation data collected from selected RC structures of CSIR-SERC campus, Chennai and carbonation data available from the reported literature on in-situ RC structures. Attempt also made to study the carbonation depth in the laboratory specimens using oxygen permeability index (OPI) test. The carbonation depth measured from RC structures and laboratory specimens are compared with estimated carbonation depth obtained from OPI test data. The modified empirical model shows good correlation with measured carbonation depth from the identified RC structures and the reported RC structures from the literature. The carbonation depth estimated from OPI values for both in-situ and laboratory specimens show lesser percentage of error compared to measured carbonation depth. From the present investigation it can be said that the OPI test is the suitable test method for both new and existing RC structures and laboratory RC specimens.

A Study on the Carbonation Characteristics of Fly Ash Concrete by Accelerated Carbonation Test (급속 촉진 탄산화 시험을 통한 플라이애쉬 콘크리트의 탄산화 특성 연구)

  • Choi, Sung;Lee, Kwang-Myong;Jung, Sang-Hwa;Kim, Joo-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.449-455
    • /
    • 2009
  • The increase of industrial carbonic dioxide emissions has accelerated the carbonation of reinforced concrete structures, which drops off their durability. Although advanced countries have already taken safety control measures against the carbonation of RC structures, it is still difficult now to accurately predict the actual carbonation depth. Additionally, it requires much time and efforts. Recently, it is possible to get the data more rapidly through accelerated carbonation test with the $CO_2$ concentration of 100%. In this paper, the carbonation test results obtained by two test methods such as the normal carbonation test method and the accelerated carbonation test method, were compared to investigate the carbonation characteristics of fly ash concrete. The accelerated carbonation test on concrete specimens with the pre-curing age of 180 days was also carried out to examine the carbonation characteristics of fly ash concrete at long-term age. Consequently, fly ash concrete at early age was vulnerable to carbonation and however, its carbonation resistance at long-term ages was improved compared with OPC concrete.

An Experimental Study on the Carbonation Properties of Concrete According to Accelerating Carbonation Conditions (촉진중성화 조건에 따른 콘크리트의 중성화 특성에 관한 실험적 연구)

  • 문형재;이의배;송민섭;주지현;조봉석;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.41-44
    • /
    • 2004
  • Recently, in the case of domestic, for all that the deterioration environment about the carbonation of reinforced concrete structures is accelerated, systematic diagnosis and researches are not completed. And the selection techniques of repair material and method used under the situation that the indicator and the performance evaluation method are nor established are dependant on existing experience. Therefore, the purpose of this study is intend to present fundamental data for the reasonable selection of repair material and method. durability design and longevity on the deteriorated reinforced concrete structures, through computing the carbonation depth and velocity coefficient by accelerating carbonation test under various accelerating conditions and investigating the application of carbonation evaluation method. The results of this study are as follow; The resistances to carbonation are increased when the W/C ratio if lower and the treatment of surface coating is executed. And the carbonation depth and velocity coefficient according to accelerating carbonation test conditions are increased when the conditions of temperature, relative humidity and $CO_2$density are higher individually.

  • PDF

Applicability Study of the Rapid Carbonation Test Equipment for Concrete (콘크리트 급속 촉진 탄산화 장비의 적용성 연구)

  • Choi, Young-Jun;Lee, Kwang-Myong;Kim, Joo-Hyung;Jung, Sang-Hwa;Lee, Myung-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.601-604
    • /
    • 2006
  • Reinforcement corrosion is the most important durability problem of reinforced concrete structures. One of the important factors affecting the steel corrosion is carbonation. However, existing carbonation test takes several months to obtain the results. Therefore, in this study, new rapid carbonation test equipment for concrete was developed and its applicability was investigated. The testing period can be reduced by increasing $CO_2$ concentration up to 100% in the equipment. It is found from the test results that the carbonation depth of concrete specimens tested for 2 weeks was $3{\sim}5$ times greater than that of specimens tested by existing test method. In conclusion, it would be possible to get the reliable test results enough to evaluate the durability of concrete structures in a short-period.

  • PDF

Properties of Compressive Strength after Accelerated Carbonation of Non-Sintered Cement Mortar Using Blast Furnace Slag and Fly Ash (고로슬래그 미분말과 플라이애시를 사용한 비소성 시멘트 모르타르의 촉진 탄산화에 따른 압축 강도 특성)

  • Ryu, Ji-Su;Na, Hyeong-Won;Hyung, Won-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.297-298
    • /
    • 2023
  • In the concrete industry, efforts are being made to reduce CO2 emissions, and technologies that collect, store, and utilize CO2 have recently been studied. This study analyzed the change in compressive strength after the accelerated carbonation test of Non-Sintered Cement(NSC) mortar. Type C Fly Ash and Type F Fly Ash were mixed in a 1:1 ratio and then mixed with Blast Furnace Slag fine powder to produce NSC. The mortar produced was cured underwater until the target age. In addition, an accelerated carbonation test was conducted under the condition of a concentration of 5 (±1.0%) of CO2 gas for 14 days. The mortar compressive strength was measured before and after 14 days of accelerated carbonation test based on the 7th and 28th days of age. As a result of the experiment, the compressive strength was improved in all binder. In general, the compressive strength of NSC mortar subjected to the accelerated carbonation test was similar to that of Ordinary Portland Cement(OPC) mortar not subjected to the accelerated carbonation test.

  • PDF

Durability Properties and Microstructure of Ground Granulated Blast Furnace Slag Cement Concrete

  • Divsholi, Bahador Sabet;Lim, Tze Yang Darren;Teng, Susanto
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.157-164
    • /
    • 2014
  • Ground granulated blast-furnace slag (GGBS) is a green construction material used to produce durable concrete. The secondary pozzolanic reactions can result in reduced pore connectivity; therefore, replacing partial amount of Portland cement (PC) with GGBS can significantly reduce the risk of sulfate attack, alkali-silica reactions and chloride penetration. However, it may also reduce the concrete resistance against carbonation. Due to the time consuming process of concrete carbonation, many researchers have used accelerated carbonation test to shorten the experimental time. However, there are always some uncertainties in the accelerated carbonation test results. Most importantly, the moisture content and moisture profile of the concrete before the carbonation test can significantly affect the test results. In this work, more than 200 samples with various water-cementitious material ratios and various replacement percentages of GGBS were cast. The compressive strength, electrical resistivity, chloride permeability and carbonation tests were conducted. The moisture loss and microstructure of concrete were studied. The partial replacement of PC with GGBS produced considerable improvement on various properties of concrete.

A Study on the Prediction Method of Carbonation Process for Concrete Structures of Nuclear Power Plant (원전 콘크리트 구조물의 중성화 진행 예측 기법에 관한 연구)

  • Koh, Kyoung-Tack;Kim, Do-Gyeum;Kim, Sung-Wook;Cho, Myung-Sung;Son, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.149-158
    • /
    • 2002
  • The carbonation process is affected by both the concrete material properties such as W/C ratio, types of cement and aggregates, admixture characteristics and the environmental factors such as $CO_2$ concentration, temperature, humidity. Based on results of preliminary study on carbonation, this study is to develop a carbonation prediction model by taking account of $CO_2$ concentration, temperature, humidity ad W/C ratio among major factor affecting the carbonation process. And to constitute a model formula which correspond to the mix design of the nuclear power plant, test coefficient that correspond to the design of the nuclear power plant is obtained based on the results of accelerated carbonation test. Also a field coefficient which is obtained based on results of the field examination is included to improve the conformity of the actual structures of nuclear power plant.

An Experimental Study on Carbonation in Cracked Concrete (균열부 콘크리트의 중성화에 대한 실험적 연구)

  • 권성준;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.655-660
    • /
    • 2002
  • Major deterioration in concrete structures are salt attack and carbonation. Especially severe problems due to carbonation occur in tile concrete structures of city, tunnel, underground structures. Cracks in concrete during service life including early age due to hydration heat and/or shrinkage accelerate the diffusion of concrete so that the deterioration is also accelerated. In this study, carbonation depths of both non-cracked concrete and cracked concrete are evaluated and weight change test and TGA are carried out. Through the tests, a relation between water-cement ratio and carbonation depth is derived and also carbonation increase rate is derived in the function of crack width.

  • PDF