• Title/Summary/Keyword: carbonation technology

Search Result 148, Processing Time 0.028 seconds

A Basic Study on the Development of Optimum Carbonation Curing Techniques for Concrete Using Supercritical CO2 (초임계 CO2를 활용한 콘크리트의 최적 탄산화양생기법 개발에 관한 기초적 연구)

  • Hong, Sung-Jun;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.91-92
    • /
    • 2022
  • This study is a basic study on carbonation curing technology of concrete using supercritical CO2, and carbonation curing was carried out by exposing concrete to supercritical CO2 for a certain period of time. In the case of conventional carbonation curing, long-term curing was performed for several weeks by controlling the concentration of CO2, but by using supercritical CO2, more rapid carbonation curing was carried out using constant temperature and pressure conditions to improve durability through surface modification of concrete. This experiment was conducted with the goal of deriving the optimal carbonation curing conditions by measuring the carbonation depth by exposing concrete for a certain period of time to conditions above the supercritical level. As a result, it was confirmed that the carbonation depth increased as the curing time increased, and the curing time could be shortened compared to the carbonation curing according to the existing CO2 concentration.

  • PDF

Evaluating the Effectiveness of In-Situ Carbonation in Floor Dry Cement Mortar Applications (바닥용 건조시멘트 모르타르 배합 내 In-situ 탄산화 적용을 위한 CO2 주입 특성 및 물리적 특성 검토)

  • Kim, Jin-Sung;Cho, Sung-Hyun;Kim, Chun-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In-situ carbonation technology represents a form of mineral carbonation that integrates CO2 into the fabrication process of cementitious construction materials, capturing CO2 as calcium carbonate(CaCO3) through a reaction between calcium ions(Ca2+) and CO2 released during cement hydration. This investigation examines the application of in-situ carbonation technology to a variety of floor dry cement mortar formulations commonly used in local construction projects. It assesses the effects of varying the CO2 injection flow rate and total volume of CO2 injected. Additionally, the study evaluates the impact of reducing the quantity of cement used as a binder on the final product's quality.

Carbonation and Cl Penetration Resistance of Alkali Silicate Impregnant of Concrete (Silicate계 콘크리트 침투성 함침제의 탄산화 및 염해 저항성)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.719-724
    • /
    • 2008
  • Every concrete structure should continue to perform its intended functions such as to maintain the required strength and durability during its lifetime. Deterioration of the concrete structure, however, occurs more progressively from the outside of the concrete exposed to severe conditions. Main deteriorations in concrete structures result from carbonation, chloride ion attack and frost attack. Concrete can therefore be more durable by applying surface protection to increase its durability using impregnants, which are normally classified into two large groups in polymeric and silicate materials. Concrete impregnants are composed of silanes and alkali silicates (sodium, potassium and lithium silicate). Thus, this study is concerned with elevating the carbonation and Cl- penetration resistance of concrete structures by applying alkali silicate hydrophilic impregnants including lithium and potassium silicates. From the experimental test results, lithium and potassium silicates produced a good improvement in carbonation resistance and are expected to be used as hydrophilic impregnants of concrete structures.

Carbonation of a few of Common materials which can fix CO2 (상용 CO2고정재료의 탄산화에 관한 문헌적 연구)

  • Chen, zheng-xin;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.47-48
    • /
    • 2016
  • Mineral carbonation technology is a process whereby CO2 is chemically reacted with calcium-and/or magnesium-containing minerals to form stable carbonate materials. Add the Materials that could fix CO2 as mineral admixture to concrete can improve the anti-carbonation properties of concrete. This paper has carried on the literature research on the carbonated mechanism of Material that could fix carbon dioxide. Such as Brucite, 𝜞-C2S, Mg2SiO4, MgO, Ca3MgSi2O8. And summarizes the development of the development of this field.

  • PDF

Study on liquid carbonation using the recycling water of ready-mixed concrete (레미콘회수수를 이용한 액상탄산화에 관한 연구)

  • Lim, Yun-Hui;Lee, Ju-Yeol;Choi, Chang-Sik;Hong, Bum-Ui;Park, Jin-Won;Lee, Dae-Young;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.770-778
    • /
    • 2013
  • In this study, a liquid carbonation method was applied for producing precipitate calcium carbonate by liquid-liquid reaction. We recycled the recycling water of ready-mixed concrete, one of construction waste for use source of carbonate ion. A supernatant separated from the recycling water of ready-mixed concrete, as a result of ICP analysis of a cation, $Ca^{2+}$ was contained up to 1100 ppm. We used MEA as a $CO_2$ absorbent for the liquid carbonation. A precipitate $CaCO_3$ was produced at more than MEA 20 wt%. The precipitate $CaCO_3$ as a final product was separated and dried. The result of XRD was confirmed the generation of $CaCO_3$ to calcite structure.

Experimental Study on the Carbonation Properties of Dry Desulfurized Gypsum

  • Seo, Sung Kwan;Kim, Yoo;Chu, Yong Sik;Cho, Hyeong Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.44-49
    • /
    • 2018
  • The use of fossil fuels is steadily increasing. The thermal power generation industry uses a lot of energy and emits a large amount of greenhouse gases. On the other hand, a desulfurization facility can be installed to remove sulfur content during boiler combustion process of the power plant. Dry desulfurized gypsum generated from dry desulfurization facilities is suitable as a $CO_2$ absorbing material due to the presence of CaO. In this study, the carbonation properties of dry desulfurized gypsum were investigated by carbonizing dry desulfurized gypsum via mixing with water and stirring. As a result of microstructural, XRD and thermal analyses of the carbonized dry desulfurized gypsum, the carbonation age was found to be suitable for 16 h. Dry desulfurized gypsum absorbs about 16% of $CO_2$ per unit weight.

Analysis of carbonation characteristics on waste concrete (폐콘크리트의 탄산화 특성 분석)

  • Kim, Nam Il;Lee, Jong Tae;Chu, Yong Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.4
    • /
    • pp.151-158
    • /
    • 2022
  • In this study, the waste concrete sample obtained as various particle size (0~2.36 mm) was carried out the basic measurements and carbonation for analyzing the possibility of its carbonation. It was then investigated some analysis such as crystallization (XRD pattern), microstructure (SEM), and the production of CaCO3 through the ignition loss (TG-DTA). The content of CaCO3 in the waste concrete sample before carbonation was found in 14.51 % and 28.52 % after carbonation in 24 hours. Moreover, the content of CaCO3 carbonated in 24 hours with fine grinded waste concrete sample was 32.73 %. The carbonation of the waste concrete sample was rapidly performed up to 6 hours, but gradually increased from 12 to 24 hours. Especially, the amount of CaCO3 between 12 and 24 hours was only produced 2.32 %. The calcite-shaped CaCO3 crystals after carbonation of the waste concrete sample were found in microstructure and their peaks were strongly detected on XRD pattern.

Study on Carbon Dioxide Storage through Mineral Carbonation using Sea Water and Paper Sludge Ash (해수와 제지슬러지소각재의 광물탄산화 반응을 이용한 이산화탄소 저장 연구)

  • Kim, Dami;Kim, Myoung-jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.18-24
    • /
    • 2016
  • Mineral carbonation is a technology for permanently storing carbon dioxide by reacting with metal oxides containing calcium and magnesium. In this study, we used sea water and alkaline industrial by-product such as paper sludge ash (PSA) for the storage of carbon dioxide through direct carbonation. We found the optimum conditions of both sea water content (mixing ratio of sea water and PSA) and reaction time required in the direct carbonation through various experiments using sea water and PSA. In addition, we compared the amounts of carbon dioxide storage with the cases when sea water and ultra-pure water were separately used as solvents in the direct carbonation with PSA. The amount of carbon dioxide storage was calculated by using both solid weight increase through the carbonation reaction and the contents of carbonate salts from thermal gravimetric analysis. PSA particle used in this study contained 67.2% of calcium. The optimum sea water content and reaction time in the carbonation reaction using sea water and PSA were 5 mL/g and 2 hours, respectively, under the conditions of 0.05 L/min flow rate of carbon dioxide injected at $25^{\circ}C$ and 1 atm. The amounts of carbon dioxide stored when sea water and ultra-pure water were separately used as solvents in the direct carbonation with PSA were 113 and $101kg\;CO_2/(ton\;PSA)$, respectively. The solid obtained through the carbonation reaction using sea water and PSA was composed of mainly calcium carbonate in the form of calcite and a small amount of magnesium carbonate. The solid obtained by using ultra-pure water, also, was found to be carbonate salt in the form of calcite.

Effect of a Combined Treatment of High Hydrostatic Pressure and Carbonation on the Quality Characteristics of Valencia Orange Juice (초고압과 Carbonation의 병합처리가 오렌지쥬스의 품질 특성에 미치는 영향)

  • Yun, Hye-Suk;Park, Seok-Jun;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.974-981
    • /
    • 1997
  • A combined treatment of high hydrostatic pressure and carbonation was used to inactivate pectinesterase (PE) and sterilize microorganisms in Valencia orange juice without major changes in its nutritive components. Quality characteristics of Valencia orange juice, such as microorganisms, PE activity, vitamin C content and color, were evaluated after it was treated with pressure, carbonation-and-pressure, and heat. Quality changes during storage at $4^{\circ}C$ and $30^{\circ}C$ after the treatments were also investigated. Pressurized orange juice (pressurized at 600 MPa for 10 min at $20^{\circ}C$) showed 7.0% residual PE activity, while the carbonated-and-pressurized orange juice (207 $kPa-CO_2$ gas pressure, pressurized at 600 MPa for 10 min at $20^{\circ}C$) showed 0%. Pressurization at 400 MPa or higher decreased the population of microorganisms in the orange juice to less than 10 CFU/mL. Carbonated-and-pressurized orange juice showed slight decrease in vitamin C content when stored at both $4^{\circ}C\;and\;30^{\circ}C$. While heat-treated ($90^{\circ}C$ for 60 sec) orange juice showed 75% decrease in vitamin C content when stored at $30^{\circ}C$. L value (lightness) and b value (yellowness) of carbonated-and-pressurized orange juice were higher than those of heat-treated orange juice when they were stored at $4^{\circ}C$ for 30 days.

  • PDF

Characteristic of Steel Corrosion in Carbonated Concrete

  • You, JeiJun;Ohno, Yoshiteru
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.130-135
    • /
    • 2005
  • In this study, accelerated corrosion tests were conducted on concrete specimens with and without accelerated carbonation beforehand for the purpose of elucidating the effects of carbonation, cover depth, and water-cement ratio (W/C) on the reinforcement corrosion. During testing, the corrosion current between the anode steel and cathode stainless steel was measured to continuously monitor the progress of corrosion throughout the test period, thereby investigating the mechanism of reinforcement corrosion and the relationship between corrosion and crack width, as well as other parameters.