• Title/Summary/Keyword: carbonate mineral

Search Result 247, Processing Time 0.032 seconds

An Experimental Study for Strength Improvement of Soft Ground using Hardening Agent and Silicate Mineral Power (수용성 고화재와 규산염광물 결합재를 활용한 지반개량재의 실험적 연구)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Cho, Jinwoo;Lee, JuHyung;Lee, Kyu-Hwan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.8-15
    • /
    • 2015
  • The demand for environmental consideration is on the increase in civil engineering. This study focuses on the development of technology to reduce the use of carbonate cement and improve its performance by using a silicate mineral and hardening agents, and presents the test results for the demonstrative evaluation of the properties of the raw material. Highly active feldspar was used as a binder to augment the bonding of the carbonate cement, and their change in strength was observed after test piece construction with the addition of soluble hardening agent. The uniaxial compression strength of the test piece of the general Portland cement with the addition of 0.5% soluble hardening agent, showed an increase by 33% and that of the test piece of cement with the addition of 70% substituted with feldspar increased by 28%. The strength of viscous soil; classified as soft ground, showed an increase of a maximum of 1.7 times when it was mixed with cement and solidifier depending on the curing period. These tests confirmed that a soluble solidifier is effective for improving the strength of a cement binder and that the highly active feldspar can be used as a binder.

Characteristics and Paleoceanographic Implications of Grain-size Distributions of Biogenic Components in Sediments from the South Korea Plateau (East Sea) (동해 남한국대지 퇴적물의 생물기원 성분 입도 분포의 특성과 고해양학적 의미)

  • Jang, Jun-Ho;Bahk, Jang-Jun;Kim, Eun-Jung;Um, In-Kwon
    • Ocean and Polar Research
    • /
    • v.42 no.3
    • /
    • pp.249-261
    • /
    • 2020
  • This study details grain-size distributions (GSDs) of carbonate and biogenic opal fractions of the sediments retrieved from the South Korea Plateau in the East Sea and draws paleocanographic implications from them. The opal-fraction GSDs show fine modes of 10.3 ㎛ and coarse modes of 102.5 ㎛ on average. The fine-mode grains of opal fractions mainly consist of small diatoms and radiolarians including their broken frustules, while the coarse-mode grains are mostly comprised of large warm-water diatoms and radiolarians. Significant positive correlation between opal contents and abundances of the coarse-mode GSDs in the total GSDs suggests that the abundances of the coarse-mode GSDs were controlled by the increased surface productivity of warm-water diatoms during interglacial stages. The carbonate-fraction GSDs show fine modes of 2.4 ㎛ and coarse modes of 99.1 ㎛ on average. The fine-mode grains mainly consist of coccolithophores, while the coarse-mode grains are mostly comprised of intact or broken planktonic foraminifera. The abundances of coarse-mode and fine-mode GSDs were not correlated with carbonate contents, suggesting a complex control exerted by both the degree of carbonate dissolution and the productivity of coccolithophores on the carbonate-fraction GSDs.

Synthesis of ultrafine calcium carbonate powders from high concentrated calcium hydroxide solution (고농도 수산화칼슘 수용액으로부터 초미립 경질 탄산칼슘 분말의 합성)

  • Ahn, Ji-Whan;Park, Charn-Hoon;Kim, Jeong-Heo;Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.509-520
    • /
    • 1996
  • Ultrafine calcim carbonate powders with the size of $0.05~0.1\;{\mu}m$ and the calcite phase were synthesized by the nozzle spouting method, which could be only obtained when high calcium ion concentration within slurry was maintained at the beginning of the reaction. But, in the regions of low ${Ca(OH)}_2$ concentration (0.5~1.0 wt%) or high ${Ca(OH)}_2$ concentration (<3.0 wt%), synthesized calcium carbonate powder was shown the large particle size with agglomeration. To obtain ultrafine calcium carbonate powder in this region, the methods of slurry circuation and $CO_{2}$ gas supply were changed during reaction. Resultly, it was possible to synthesize ultrafine particles (${\approx}0.05{\mu}\textrm{m}$)in the regions of low ${Ca(OH)}_2$ concentration (${\approx}0.5wt%$) and high ${Ca(OH)}_2$ concentration (${\approx}0.5wt%$), which can not be obtained the fine calcium carbonate powder still now.

  • PDF

The Effect of Chloride Additives and pH on Direct Aqueous Carbonation of Cement Paste (시멘트 풀의 직접수성탄산화에서 Chloride 첨가제와 pH의 영향)

  • Lee, Jinhyun;Hwang, Jinyeon;Lee, Hyomin;Son, Byeongseo;Oh, Jiho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.39-49
    • /
    • 2015
  • Recently, carbon capture and storage (CCS) techniques have been globally studied. This study was conducted to use waste cement powder as an efficient raw material of mineral carbonation for $CO_2$ sequestration. Direct aqueous carbonation experiment was conducted with injecting pure $CO_2$ gas (99.9%) to a reactor containing $200m{\ell}$ reacting solution and the pulverized cement paste (W:C = 6:4) having particle size less than 0.15 mm. The effects of two additives (NaCl, $MgCl_2$) in carbonation were analyzed. The characteristics of carbonate minerals and carbonation process according to the type of additives and pH change were carefully evaluated. pH of reacting solution was gradually decreased with injecting $CO_2$ gas. $Ca^{2+}$ ion concentration in $MgCl_2$ containing solution was continuously decreased. In none $MgCl_2$ solution, however, $Ca^{2+}$ ion concentration was increased again as pH decreased. This is probably due to the dissolution of newly formed carbonate mineral in low pH solution. XRD analysis indicates that calcite is dominant carbonate mineral in none $MgCl_2$ solution whereas aragonite is dominant in $MgCl_2$ containing solution. Unstable vaterite formed in early stage of experiment was transformed to well crystallized calcite with decreasing pH in the absence of $MgCl_2$ additives. In the presence of $MgCl_2$ additives, the content of aragonite was increased with decreasing pH whereas the content of calite was decreased.

Carbonate Biomineralization Using Speleothems and Sediments from Baekasan Acheon Cave (Limestone Cave) in Hwasun-gun, Jeollanam-do, South Korea (전남 화순군 백아산 아천동굴(석회동굴) 동굴생성물을 이용한 생광물화작용 연구)

  • Kim, Yumi;Seo, Hyunhee;Jo, Kyoung-nam;Jung, Dayae;Shin, Seungwon;Huh, Min;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.113-121
    • /
    • 2018
  • Baekasan Acheon cave located in Hwasun-gun, Jeollanam-do is a natural limestone cave only found in this province. In this study, the mineralogical and geochemical characteristics of speleothems collected from Baekasan Acheon cave were identified and the capability of carbonate mineral formation by aerobic microorganisms enriched from the cave and the mineralogical and geochemical characteristics of carbonate minerals formed by the microorganisms were investigated. The samples of sediments (clay) and speleothems (shelfstone and cave coral) were collected at three sites in the cave. The samples of shelfstone and cave coral were identified mainly as carbonate mineral, Mg-rich calcite, and clay minerals were composed of quartz, muscovite, and vermiculite by X-ray diffraction (XRD) analysis. To cultivate the carbonate forming microorganisms, parts of the sediment and speleothems were placed in D-1 medium containing urea, respectively, and the growth of microorganisms was observed under the aerobic condition at room temperature. The capability of carbonate mineralization of the cultured Baekasan Acheon cave microorganisms was examined through adding 1% (v/v) of the cultured microorganisms and calcium sources, Ca-acetate or Ca-lactate, into the D-1 medium. XRD analysis showed that the microorganisms cultured in cave deposits formed calcium carbonate ($CaCO_3$) under all conditions, and these microbial carbonate minerals included calcite and vaterite. The morphological characteristics and chemical composition of biologically formed minerals were observed by SEM-EDS showed various crystal forms such as rhomboid, spherical, perforated surface with Ca, C, and O of major chemical components. The existence of such microorganisms in the cave can contribute the formation of carbonate minerals, and it is likely to affect the geochemical cycles of carbon and calcium in the cave.

Debonding of microbially induced carbonate precipitation-stabilized sand by shearing and erosion

  • Do, Jinung;Montoya, Brina M.;Gabr, Mohammed A.
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.429-438
    • /
    • 2019
  • Microbially induced carbonate precipitation (MICP) is an innovative soil improvement approach utilizing metabolic activity of microbes to hydrolyze urea. In this paper, the shear response and the erodibility of MICP-treated sand under axial compression and submerged impinging jet were evaluated at a low confining stress range. Loose, poorly graded silica sand was used in testing. Specimens were cemented at low confining stresses until target shear wave velocities were achieved. Results indicated that the erodibility parameters of cemented specimens showed an increase in the critical shear stress by up to three orders of magnitude, while the erodibility coefficient decreased by up to four orders of magnitude. Such a trend was observed to be dependent on the level of cementation. The treated sand showed dilative behavior while the untreated sands showed contractive behavior. The shear modulus as a function of strain level, based on monitored shear wave velocity, indicated mineral debonding may commence at 0.05% axial strain. The peak strength was enhanced in terms of emerging cohesion parameter based on utilizing the Mohr-Coulomb failure criteria.

Mineralogy and Geochemistry of Carbonate Minerals from the Olon Ovoot Gold Mine, Mongolia (몽골 Olon Ovoot 금 광산에서 산출되는 탄산염광물의 산출상태 및 화학조성)

  • Yoo, Bong Chul;Tungalag, Naidansuren;Sereenen, Jargalen;Heo, Chul-Ho;Ko, Sang-Mo
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.181-191
    • /
    • 2014
  • Olon Ovoot gold mine, Mongolia, is located in the Omnogobi province which is south 500 km from Ulaanbaatar. The mine area consists of the Devonian Bot-Uul khudag formation, the Upper Devonian intrusions, and the Upper Devonian or the Early Jurassic quartz veins. The quartz veins contain from 1 to 32 g/t gold with an average of 5 g/t gold. The quartz veins vary from 0.2 m to 25 m and are concordant or discordant with foliation of the green-schist. The mineralogy of the quartz veins is simple and consists of mainly of white massive quartz with partly transparent quartz in cavity. Quartz, sericite, chlorite, pyrite and carbonates(ankerite, dolomite and siderite) were observed in the alteration zone. Carbonate minerals occur as disseminated, coarse or fine grains with quartz, sericite, chlorite and pyrite near vein margin or within wall-rock xenoliths in quartz vein. Ankerite is present as later dark grey ankerite(13.51 to 16.89 wt.% FeO) and early white grey ankerite(16.67 to 19.90 wt.% FeO). The FeO contents of early ankerite are higher than those of later ankerite. Dolomite contains from 3.89 to 10.44 wt.% FeO and from 0.10 to 0.47 wt.% MnO. Dolomite is present as dark grey dolomite(4.06 to 6.87 wt.% FeO), light white grey dolomite(6.74 to 7.58 wt.% FeO) and grey white dolomite(7.33 to 10.44 wt.% FeO). The FeO contents of white grey dolomite are higher than those of dark grey dolomite. Siderite contains from 34.25 to 48.66 wt.% FeO, from 6.79 to 14.38 wt.% MgO, from 0.06 to 0.26 wt.% MnO and from 2.08 to 8.08 wt.% CaO.

CO2 Sequestration and Utilization of Calcium-extracted Slag Using Air-cooled Blast Furnace Slag and Convert Slag (괴재 및 전로슬래그를 이용한 CO2 저감 및 칼슘 추출 후 슬래그 활용)

  • Yoo, Yeongsuk;Choi, Hongbeom;Bang, Jun-Hwan;Chae, Soochun;Kim, Ji-Whan;Kim, Jin-Man;Lee, Seung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.101-111
    • /
    • 2017
  • Mineral carbonation is a technology in which carbonates are synthesized from minerals including serpentine and olivine, and industrial wastes such as slag and cement, of which all contain calcium or magnesium when reacted with carbon dioxide. This study aims to develop the mineral carbonation technology for commercialization, which can reduce environmental burden and process cost through the reduction of carbon dioxide using steel slag and the slag reuse after calcium extraction. Calcium extraction was conducted using NH4Cl solution for air-cooled slag and convert slag, and ${\geq}98%$ purity calcium carbonate was synthesized by reaction with calcium-extracted solution and carbon dioxide. And we conducted experimentally to minimize the quantity of by-product, the slag residue after calcium extraction, which has occupied large amount of weight ratio (about 80-90%) at the point of mineral carbonation process using slag. The slag residue was used to replace silica sand in the manufacture of cement panel, and physical properties including compressive strength and flexible strength of panel using the slag residue and normal cement panel, respectively, were analyzed. The calcium concentration in extraction solution was analyzed by inductively coupled plasma optical emission spectrometer (ICP-OES). Field-emission scanning electron microscope (FE-SEM) was also used to identify the surface morphology of calcium carbonate, and XRD was used to analyze the crystallinity and the quantitative analysis of calcium carbonate. In addition, the cement panel evaluation was carried out according to KS L ISO 679, and the compressive strength and flexural strength of the panels were measured.

Investigation of Alkali-Aggregate Reaction of Abroad Aggregates (Using Area of KOREA Cement) (첨가 이온종류에 따른 외국 골재의 알카리.골재 반응성 조사연구 (한국 시멘트 사용 지역 중심))

  • 현석훈;엄태형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.111-117
    • /
    • 1995
  • The alkali-aggregate reaction is a reaction between the alkali metals in the pore water of a concrete and an unstable mineral of the aggregate. There are three types of alkali-aggregate reation which causes deterioration of concrete, such as alkali-silicate reation, alkali-carbonate reaction and alkali-silica reation. Deterioration due to alkali-silica reation is more comon than that due to either the alkali-silicate or alkali-carbonate reaction. The alkali-silica reation is a reaction between the hydroxyl ions in the pore water of a concrete and silica which exists in signigicant quantities in the aggregate. In this PAPER, Alkali-aggregate reactions of mortar made with various abroad aggregate were investigated using XRD, microscope, chemical and physical tests. In additions, the effects of the texture of aggregate, Na, K, CI ion concentrations added to the mortar, on these reactions were studied.

  • PDF

Effects of Blending Ratio of Pigments on Properties and Printability of the Double Coated Paper (안료의 배합비가 더블 도공지의 물성 및 인쇄적성에 미치는 영향)

  • Kim, Chang-Keun;Lee, Yong-Kyu
    • Journal of Forest and Environmental Science
    • /
    • v.18 no.1
    • /
    • pp.97-105
    • /
    • 2001
  • The main objective of this study was to investigate effects of pigment mixed with different ratio on the double coated paper. Mineral pigments such as clay and ground calcium carbonate(GCC) as well as hollow sphere plastic pigment were used to evaluate the physical, optical properties and printabilities of double coated paper. The physical properties such as gloss and smoothness, and the printability(ink gloss) of double coated paper were measured to evaluate the effects of the bottom layer on improving the properties of top layer. The data indicated that the usage of hollow sphere plastic pigment for the bottom layer coating improved the surface properties of double coated paper, and that ink gloss was significantly influenced by the structure of bottom layer even when hollow sphere plastic pigment was used for the bottom layer coating.

  • PDF