• Title/Summary/Keyword: carbon utilization

Search Result 619, Processing Time 0.037 seconds

Gasification Technology as Energy Utilization Platform of Biomass (바이오매스 활용 기반으로의 가스화 기술)

  • Lee, Jeung W.;Kim, Young D.;Yang, Chang W.;Kim, Kwang S.;Moon, Ji H.;Kim, Beom J.;Jeong, Jae Y.;Park, Ju H.;Park, Min S.;Lee, Uen D.
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.175-176
    • /
    • 2012
  • As a carbon neutral fuel, biomass can be converted into various types of high-valued products such as synthetic natural gas (SNG), Hydrogen, Fischer - Tropsch (FT) diesel. and valuable chemicals. In order to make above mentioned products, gasificaion process is essential as energy utilization platform of solid biomass. In this study, state of the art and prospect for biomass gasification technologies are presented.

  • PDF

Preparation of Pt Catalysts Supported on ACF with CNF via Catalytic Growth

  • Park, Sang-Sun;Rhee, Jun-Ki;Jeon, Yu-Kwon;Choi, Sung-Won;Shul, Yong-Gun
    • Carbon letters
    • /
    • v.11 no.1
    • /
    • pp.38-40
    • /
    • 2010
  • Carbon supported electrocatalysts are commonly used as electrode materials for polymer electrolyte membrane fuel cells(PEMFCs). These kinds of electrocatalysts provide large surface area and sufficient electrical conductivity. The support of typical PEM fuel cell catalysts has been a traditional conductive type of carbon black. However, even though the carbon particles conduct electrons, there is still significant portion of Pt that is isolated from the external circuit and the PEM, resulting in a low Pt utilization. Herein, new types of carbon materials to effectively utilize the Pt catalyst are being evaluated. Carbon nanofiber/activated carbon fiber (CNF/ACF) composite with multifunctional surfaces were prepared through catalytic growth of CNFs on ACFs. Nickel nitrate was used as a precursor of the catalyst to synthesize carbon nanofibers(CNFs). CNFs were synthesized by pyrolysising $CH_4$ using catalysts dispersed in acetone and ACF(activated carbon fiber). The as-prepared samples were characterized with transmission electron microscopy(TEM), scanning electron microscopy(SEM). In TEM image, carbon nanofibers were synthesized on the ACF to form a three-dimensional network. Pt/CNF/ACF was employed as a catalyst for PEMFC. As the ratio of prepared catalyst to commercial catalyst was changed from 0 to 50%, the performance of the mixture of 30 wt% of Pt/CNF/ACF and 70wt% of Pt/C commercial catalyst showed better perfromance than that of 100% commercial catalyst. The unique structure of CNF can supply the significant site for the stabilization of Pt particles. CNF/ACF is expected to be promising support to improve the performance in PEMFC.

A Study on the Evaluation of Carbon Neutral Housing Development through SBTool (SBTool을 활용한 탄소중립형 주거단지 평가에 관한 연구)

  • Jeon, Woo-Seon;Choi, Joon-Sung;Oh, Deog-Seong
    • KIEAE Journal
    • /
    • v.12 no.2
    • /
    • pp.83-92
    • /
    • 2012
  • Recently, many countries are tightening a variety of policies and controls with great efforts to reduce emission of GHGs(Greenhouse Gases) as concern for climate change heightens. The purpose of the study is to provide guidelines for planning and evaluate element and evaluate housing development. The elements are also assorted into 6 sections and 30 planning elements were drawn from them. It is drawn to 6 sections, 27 categories, 31 evaluation elements except cultural and perceptual aspects unrelated to planning elements from these elements. Case analysis has shown that most of planning elements were applied because these cases obtained environment-friendly certification in the country. Followings are the common characteristics. Firstly, it showed that application of planning element in all cases is excellent. Secondly, the case with excellent application of elements related with energy and application degree obtained excellent degree i environment-friendly certification in the country. Finally, application of planning elements related with renewable energy was in poor condition in all cases. With the utilization of SBTool, the evaluation results about planning elements of housing complex of Carbon emissions-reduction type showed that CASE-A obtained 11.17 points and CASE-B obtained 9.24 points. In the case of renewable energy section, it was confirmed that the evaluation doesn't work well. As a result, changes of planning elements affect environment-friendly extent. It was confirmed that accessibility to housing complex of Carbon emissions-reduction type could change. Estimated result of Amount of Carbon emission showed that annual energy consumption per each family of CASE-A is $4,269,964MJ/m^2$, as a result of which, Carbon emission is $234,815kg/m^2$. And annual energy consumption per family of CASE-B is $4,197,563MJ/m^2$, as a result of which, Carbon emission is $214,584kg/m^2$. Application of planning elements in the aspect of housing complex of Carbon emissions-reduction type shows that the level for Carbon emissions-reduction is high level. And study with assessment from the draft should be followed.

Synthesis of Hollow Carbon Spheres with Various Diameters and Their Lithium Storage Properties (다양한 직경의 속이 빈 탄소구체의 제조 및 리튬 저장 특성)

  • Seulgi Shin;Hyeokrae Cho;Yong-Jae Jung;Sang-Mo Koo;Jong-Min Oh;Weon Ho Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.10-15
    • /
    • 2023
  • The carbonaceous materials have attracted much attention for utilization of anode materials for lithium-ion batteries. Among them, hollow carbon spheres have great advantages (high specific capacity and good rate capability) to replace currently used graphite anode materials, due to their unique features such as high surface areas, high electrical conductivities, and outstanding chemical and thermal stability. Herein, we have synthesized various sizes of hollow carbon spheres by a facile hardtemplate method and investigated the anode properties for lithium-ion batteries. The obtained hollow carbon spheres have uniform diameters of 350 ~ 600 nm by varying the template condition, and they do not have any cracks after the optimization of the process. Increasing the diameter of hollow carbon spheres decreases their specific capacities, since the larger hollow carbon spheres have more useless spaces inside that could have a disadvantage for lithium storage. The hollow carbon spheres have outstanding rate and cyclic performance, which is originated from the high surface area and high electrical properties of the hollow carbon spheres. Therefore, hollow carbon spheres with smaller diameters are expected to have higher specific capacities, and the noble channel structures through various doping approaches can give the great possibility of high lithium storage properties.

Utilization of Sapwood Waste of Fast-Growing Teak in Activated Carbon Production and Its Adsorption Properties

  • Johanes Pramana Gentur SUTAPA;Ganis LUKMANDARU;Sigit SUNARTA;Rini PUJIARTI;Denny IRAWATI;Rizki ARISANDI;Riska DWIYANNA;Robertus Danu PRIYAMBODO
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.2
    • /
    • pp.118-133
    • /
    • 2024
  • The sapwood portion of fast-growing teak is mostly ignored due to its inferior quality. One of the possibilities for utilizing sapwood waste is to convert it into activated carbon that has good adsorption capabilities. The raw materials used in this research were sapwood of 14-year-old fast-growing teak sapwood (FTS) waste, which was taken from three trees from community forests in Wonosari, Gunungkidul, Yogyakarta Special Region. FTS waste was taken from the bottom of the tree up to a height of 1.3 m. The activation process is conducted with an activation temperature of 750℃, 850℃, and 950℃. The heating duration consists of three variations: 30 min, 60 min, and 90 min. The quality evaluation parameters of activated carbon include yield, moisture content, volatile matter content, ash content, fixed carbon content, adsorption capacity of benzene, adsorption capacity of methylene blue, and adsorption capacity of iodine. The results showed that the activated carbon produced had the following quality parameters: yield of 75.61%; moisture content of 1.27%; volatile matter content of 9.98%; ash content of 5.43%; fixed carbon content of 84.58%; benzene absorption capacity of 8.58%; methylene blue absorption capacity of 87.73 mg/g; and iodine adsorption capacity of 948.19 mg/g. It can be concluded that activated carbon from FTS waste has good iodine adsorption, which fulfilled the SNI 06-3730-1995 quality standard. Due to the iodine adsorption ability of FTS waste activated carbon, the conversion of FTS waste to activated carbon is categorized as a potential method to increase the value of this material.

Enhancement of Biocontrol Activity of Antagonistic Chryseobacterium Strain KJ1R5 by Adding Carbon Sources against Phytophthora capsici

  • Kim, Yu-Seok;Jang, Bo-Ra;Chung, Ill-Min;Sang, Mee-Kyung;Ku, Han-Mo;Kim, Ki-Deok;Chun, Se-Chul
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.164-170
    • /
    • 2008
  • Carbon utilization by Chryseobacterium strain KJ1R5 was studied to enhance its biocontrol activity against Phytophthora capsid. Chryseobacterium strain KJ1R5 has previously been shown to control Phytophthora blight of pepper (Capsicum annuum L.). Strain KJ1R5 could utilize carbon sources such as L-arabinose, D-cellobiose, ${\beta}-lactose$ and D-galactose well. P. capsici could utilize D-glucose well, showing the absorbencies ranged from 0.577 to 0.767 at 600nm. When 2% L-arabinose, which could only be utilized by the bio-control strain KJ1R5, was amended into the bacterial suspension, the efficacy of biological control increased. Among the amendments of various carbon sources into bacterial suspension, L-arabinose and D-(+)-glucose significantly enhanced biological control activity, resulting in a reduction of disease incidence to 6.9%, compared to 21.9% for the strain KJ1R5 alone and 81.3% for P. capsici inoculation alone, indicating that amendment with specific carbon sources could increase the biological control activity.

Electrocatalytic activity of Carbon-supported near-surface alloys (NSAs) for Electode reaction of Fuel cell (연료전지 전극 반응을 위한 카본 담지 표면 합금의 전기촉매 활성)

  • Park, In-Su;Lee, Kug-Seung;Choi, Baeck-Beom;Sung, Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.316-319
    • /
    • 2006
  • There is a worldwide interest in the development and commercialization of Polymer Electrolyte Membrane Fuel Cells (PEMFCs) for vehicular and stationary applications. One of the major objectives is the reduction of loaded electrode materials, which is comprise of the Pt-based noble metals. In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the deposition of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled active materials were formed on the surface of carbon-supported Au nanoparticles. The structural and electrochemical analyses indicate that the active materials were deposited on the surface of Au nanoparticles selectively and that an at toying process occurred during the successive reducing process The carbon-supported & surface-alloys showed the higher electrocatalytic activity than those of the particle-alloys and commercial one (Johnson-Matthey) for the reaction of methanol and formic acid oxidation. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

Technology Trend for Carbon Nanomaterials Hydrogen Storage by the Patent Analysis (특허분석에 의한 탄소 나노재 수소저장 기술 동향)

  • Park, Soo-Jin;Lee, Young-Seak;Kang, Kyung-Seok;Choi, Mi-Jeong;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.77-89
    • /
    • 2008
  • There are several materials for the hydrogen storage such as hydrogen storage alloy, carbon nanomaterials, non-carbon nanomaterials, compounds etc. Efficient and inexpensive hydrogen storage is an essential prerequisite for the utilization of hydrogen, one of the new and clean energy sources. Many researches have been widely performed for the hydrogen storage techniques and materials having high storage capacity and stability. In this paper, the patents concerning the carbon nanomaterial hydrogen storage method were gathered and analyzed. The search range was limited in the open patents of Korea(KR), Japan(JP), USA(US) and European Union(EP) from 1996 to 2006. Patents were gathered by using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.