• 제목/요약/키워드: carbon utilization

검색결과 620건 처리시간 0.029초

A Separator with Activated Carbon Powder Layer to Enhance the Performance of Lithium-Sulfur Batteries

  • Vu, Duc-Luong;Lee, Jae-Won
    • 한국분말재료학회지
    • /
    • 제25권6호
    • /
    • pp.466-474
    • /
    • 2018
  • The high theoretical energy density ($2600Wh\;kg^{-1}$) of Lithium-sulfur batteries and the high theoretical capacity of elemental sulfur ($1672mAh\;g^{-1}$) attract significant research attention. However, the poor electrical conductivity of sulfur and the polysulfide shuttle effect are chronic problems resulting in low sulfur utilization and poor cycling stability. In this study, we address these problems by coating a polyethylene separator with a layer of activated carbon powder. A lithium-sulfur cell containing the activated carbon powder-coated separator exhibits an initial specific discharge capacity of $1400mAh\;g^{-1}$ at 0.1 C, and retains 63% of the initial capacity after 100 cycles at 0.2 C, whereas the equivalent cell with a bare separator exhibits a $1200mAh\;g^{-1}$ initial specific discharge capacity, and 50% capacity retention under the same conditions. The activated carbon powder-coated separator also enhances the rate capability. These results indicate that the microstructure of the activated carbon powder layer provides space for the sulfur redox reaction and facilitates fast electron transport. Concurrently, the activated carbon powder layer traps and reutilizes any polysulfides dissolved in the electrolyte. The approach presented here provides insights for overcoming the problems associated with lithium-sulfur batteries and promoting their practical use.

탄소섬유 쉬트를 활용한 도로 결빙방지 시스템 개발을 위한 기초연구 (Fundamental Study for Development of an Anti-Icing Pavement System Using Carbon-Fiber Sheet)

  • 임치수;박광필;이재준;이병석
    • 한국도로학회논문집
    • /
    • 제18권3호
    • /
    • pp.59-65
    • /
    • 2016
  • PURPOSES : This paper aims to develop a road pavement de-icing system using carbon sheet to replace the older snow de-icing method. Carbon sheet is a light and high-strength metal. Hence, various bodies of research for its applications in many industries have progressed. METHODS : The experiment was conducted in a laboratory. The carbon sheet supplied voltage through a power supply system, and produced heat transfers to the concrete surface. Various factors, such as pavement material, carbon sheet width, penetration depth, and freezing-thawing resistance, were considered in the conducted experiments to confirm the heating transfer efficiency of the carbon sheet. RESULTS : The carbon sheet used was a conductor. Therefore, it produced heat if voltage was supplied. The exposed carbon sheet on the atmosphere did not affect the carbon sheet width when it provided constant voltage. However, the sheet showed different heating behaviors by width change when the carbon sheet penetrated into the concrete. Moreover, the freezing-thawing resistance was decreased by the carbon sheet with increasing width. CONCLUSIONS : The experiments confirmed the possibility of developing a road snow melting system using a carbon sheet. The antiicing system using the carbon sheet to replace the traditional anti-icing system has disadvantages of environmental pollution risk and electric leakage. The pavement also improved its toughness resistance. The utilization value will be very high in the future if carbon sheet heat loss can be minimized and durability is improved.

NECESSITY OF READY ELECTRON DISPOSAL AND INTERSPECIES HYDROGEN TRANSFER FOR THE UTILIZATION OF ETHANOL BY RUMEN BACTERIA

  • Hino, T.;Mukunoki, H.;Imanishi, K.;Miyazaki, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제5권3호
    • /
    • pp.511-517
    • /
    • 1992
  • Ethanol was utilized by mixed rumen microbes, but addition of pentachlorophenol (25 mg/l), a methanogen inhibitor, suppressed the utilization of ethanol. Carbon monoxide (50% of the gas phase), a hydrogenase inhibitor, more strongly suppressed the utilization of ethanol, propanol, and butanol. These results suggest that the major ethanol utilizers are $H_2$ producers. Ethanol utilization was depressed at low pH (below 6.0). Since methanogens were shown to be relatively resistant to low pH, it appears that ethanol utilizers are particularly sensitive to low pH. Ruminococcus albus and R. flavefaciens in mono-culture produced ethanol from carbohydrate (glucose and cellobiose), even when a high level (170 mM) of ethanol was present. Ethanol was not utilized even in the absence of carbohydrate, but the co-culture of these bacteria with methanogens resulted in the utilization of ethanol, i.e., when $H_2$ was rapidly converted to $CH_4$, R. albus and R. flavefaciens utilized ethanol. These results suggest that ethanol is utilized when the electrons liberated by the oxidation of ethanol are rapidly removed, and ready electron disposal in ethanol-utilizing, $H_2$-producing bacteria is accomplished by the interspecies transfer of $H_2$.

Denitrifying PAO와 SBBR-MSBR을 이용한 생물학적영양소제거공정에서 탄소원 절약에 대한 연구 (Evaluation of COD Utilization for Biological Nutrient Removal with dPAO in SBBR-MSBR System)

  • 이한샘;한종훈;윤주환
    • 한국물환경학회지
    • /
    • 제27권5호
    • /
    • pp.646-653
    • /
    • 2011
  • The combined system of sequencing batch biofilm reactor (SBBR) and membrane SBR (MSBR) was operated with sewage to evaluate the COD utilization for biological nutrient removal (BNR). The SBBR was operated for nitrification reactor, while denitrifying PAO (dPAO) was cultivated in MSBR with anaerobic-anoxic operation. In the SBBR and MSBR system, the enhanced biological phosphorus removal (EBPR) was successfully achieved with higher N removal. The COD utilization in combined SBBR-MSBR system was significantly reduced compared to ordinary BNR (up to 3.1 g SCOD/g (N+P) and 1.6 g SCOD/g (N+P) with different C/N/P ratio). The results suggest that a dPAO process could effectively reduce carbon energy (=COD) requirement. The combination of oxic-SBBR and anaerobic-anoxic MSBR for dPAO utilization could be an attractive alternative to upgrade the process performance in weak sewage.

Preparation and Characterization of Sisal Fiber-based Activated Carbon by Chemical Activation with Zinc Chloride

  • Lu, Xincheng;Jiang, Jianchun;Sun, Kang;Xie, Xinping
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.103-110
    • /
    • 2014
  • Sisal fiber, an agricultural resource abundantly available in china, has been used as raw material to prepare activated carbon with high surface area and huge pore volume by chemical activation with zinc chloride. The orthogonal test was designed to investigate the influence of zinc chloride concentration, impregnation ratio, activation temperature and activation time on preparation of activated carbon. Scanning electron micrograph, Thermo-gravimetric, $N_2$-adsorption isotherm, mathematical models such as t-plot, H-K equation, D-R equation and BJH methods were used to characterize the properties of the prepared carbons and the activation mechanism was discussed. The results showed that $ZnCl_2$ changed the pyrolysis process of sisal fiber. Characteristics of activated carbon are: BET surface area was $1628m^2/g$, total pore volume was $1.316m^3/g$ and ratio of mesopore volume to total pore volume up to 94.3%. These results suggest that sisal fiber is an attractive source to prepare mesoporous high-capacity activated carbon by chemical activation with zinc chloride.

The Core Urban Design Strategies of Tall Building - Low Carbon Community

  • Liu, Enfang;Fan, Wenli;Pan, Jianing;Li, Jianqiang
    • 국제초고층학회논문집
    • /
    • 제2권2호
    • /
    • pp.85-91
    • /
    • 2013
  • Tall building has some controversial aspects with low carbon city, but it is still a sensible choice for the metropolitan city. This paper aims to develop holistic urban design strategies to minimize impacts on the environment, increase energy efficiency and improve the quality of living in tall building communities by utilizing tall building characteristics. It puts forward the concept of integrated tall building-low carbon community design from the perspective of urban design, and summarizes five core strategies: Temporal state based on energy use, Complementary energy use state based on functions, Spatial state based on regional environment features, Transportation state based on low-carbon lifestyle and Waste utilization state based on tall building characteristics. It also applies the strategies to a practical project. The results show that the proposed urban design strategies are available approaches to mitigate the side effects of tall building on low carbon city.

메탄 하이드레이트 생성을 위한 THF와 산화 탄소나노튜브의 영향에 대한 비교 연구 (A Comparative Study on the Effect of THF and Oxidized Carbon Nanotubes for Methane Hydrate Formation)

  • 박성식;안응진;김남진
    • 설비공학논문집
    • /
    • 제23권12호
    • /
    • pp.769-775
    • /
    • 2011
  • Methane hydrate is formed by physical binding between water molecules and methane gas, which is captured in the cavities of water molecules under the specific temperature and pressure. $1m^3$ hydrate of pure methane can be decomposed to the methane gas of $172m^3$ and water of $0.8m^3$ at standard condition. Therefore, there are a lot of practical applications such as separation processes, natural gas storage transportation and carbon dioxide sequestration. For the industrial utilization of hydrate, it is very important to rapidly manufacture hydrate. So in this study, hydrate formation was experimented by adding THF and oxidized carbon nanotubes in distilled water, respectively. The results show that when the oxidized carbon nanofluids of 0.03 wt% was, the amount of gas consumed during the formation of methane hydrate was higher than that in the THF aqueous solution. Also, the oxidized carbon nanofluids decreased the hydrate formation time to a greater extent than the THF aqueous solution at the same subcooling temperature.

암모니아의 특성에 따른 활용 현황과 부식 손상에 대한 고찰 (A Study on the Utilization Status and Corrosion Damage with Ammonia Characteristics)

  • 이승준
    • 한국표면공학회지
    • /
    • 제56권2호
    • /
    • pp.125-136
    • /
    • 2023
  • Recently, ammonia has emerged as an alternative energy source that can reduce carbon emissions in various industries. Ammonia is used as a fuel in internal combustion engines because it contains no carbon in its components and does not emit any carbon when burned. It is also used in various fields such as fertilizer production, refrigeration, cleaning and disinfection, and drug manufacturing due to its unique characteristics, such as high volatility and easy solubility in water. However, it is highly corrosive to metals and is a toxic gas that can pose a risk to human health, so caution must be exercised when using it. In particular, stress corrosion cracking may occur in containers or manufacturing facilities made of carbon-manganese steel or nickel steel, so special care is needed. As ammonia has emerged as an alternative fuel for reducing carbon emissions, there is a need for a rapid response. Therefore, based on a deep understanding of the causes and mechanisms of ammonia corrosion, it is important to develop new corrosion inhibitors, improve corrosion monitoring and prediction systems, and study corrosion prevention design.

Research on safety assessment and application effect of nanomedical products in physical education

  • Zhuli Li;Song Peng;Gang Chen
    • Advances in nano research
    • /
    • 제15권3호
    • /
    • pp.253-261
    • /
    • 2023
  • This study investigates the application of nano-composite materials in physical education, specifically focusing on improving the performance of sports hall flooring. The research centers on carbon nanotube reinforced polyvinyl chloride (PVC) composites, which offer enhanced mechanical properties and durability. The incorporation of carbon nanotubes as reinforcements in the PVC matrix provides notable benefits, including increased strength, improved thermal stability, electrical conductivity, and resistance to fatigue. The key parameters examined in this study are the weight percentage of carbon nanotubes and the temperature during the fabrication process. Through careful analysis, it is found that higher weight percentages of carbon nanotubes contribute to a more uniform dispersion within the PVC matrix, resulting in improved mechanical properties. Additionally, higher fabrication temperatures aid in repairing macroscopic defects, leading to enhanced overall performance. The findings of this study indicate that the utilization of carbon nanotube reinforced PVC composites can significantly enhance the strength and durability of sports hall flooring. By employing these advanced materials, the safety and suitability of physical education environments can be greatly improved. Furthermore, the insights gained from this research can contribute to the optimization of composite material design and fabrication techniques, not only in the field of physical education but also in various industries where composite materials find applications.

Comparative Studies on the Utilization of Glucose in the Mammary Gland of Crossbred Holstein Cattle Feeding on Different Types of Roughage during Different Stages of Lactation

  • Chaiyabutr, N.;Komolvanich, S.;Preuksagorn, S.;Chanpongsang, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권3호
    • /
    • pp.334-347
    • /
    • 2000
  • The present experiment was carried out to study the utilization of glucose in the mammary gland of crossbred Holstein cattle during feeding with different types of roughage. Sixteen first lactating crossbred Holstein cattle which comprised eight animals of two breed types, Holstein Friesian${\times}$Red Sindhi ($50{\times}50=50%$ HF) and Holstein Friesian${\times}$Red Sindhi ($87.5{\times}12.5=87.5%$ HF). They were divided into four groups of 4 animals each of the same breed. The utilization of glucose in the mammary gland was determined by measuring rates of glucose uptake and the incorporation of glucose into milk components in both groups of 50% HF and 87.5% HF animals feeding on either hay or urea treated rice straw. In early lactation, there were no significant differences of the total glucose entry rate and glucose carbon recycling among groups of crossbred animals feeding on either hay or urea treated rice straw. During lactation advance, the total glucose turnover rates and recycling of carbon glucose of crossbred HF animals feeding on urea treated rice straw were markedly higher than those of crossbred HF animals feeding on hay as roughage, whereas there were no significant changes for both groups of crossbred animals feeding on hay. The percentages and values of non-mammary glucose utilization showed an increase during lactation advance in the same group of both 50% HF and 87.5% HF animals. The percentage of glucose uptake for utilization in the synthesis of milk lactose by the mammary gland was approximately 62% for both groups of 87.5% HF and by approximately 55% for both groups of 50% HF animals feeding on either hay or urea treated rice straw. Intracellular glucose 6-phosphate metabolized via the pentose phosphate pathway accounted for the NADPH (reducing equivalent) of fatty acid synthesis in the mammary gland being higher in 87.5% HF animals during mid-lactation. A large proportion of metabolism of glucose via the Embden-Meyerhof pathway in the mammary gland was more apparent in both groups of 50% HF animals than those of 87.5 % HF animals during early and mid-lactation while it markedly increased for both groups of 87.5% HF animals during late lactation. It can be concluded that utilization of glucose in the mammary gland occurs in a different manner for 50% HF and 87.5% HF animals feeding on either hay or urea treated rice straw. The glucose utilization for biosynthetic pathways in the mammary gland of 50% HF animals is maintained in a similar pattern throughout the periods of lactation. A poorer lactation persistency in both groups of 87.5% HF animals occurs during lactation advance, which is related to a decrease in the lactose biosynthetic pathway.