DOI QR코드

DOI QR Code

A Separator with Activated Carbon Powder Layer to Enhance the Performance of Lithium-Sulfur Batteries

  • Vu, Duc-Luong (Department of Energy Engineering, Dankook University) ;
  • Lee, Jae-Won (Department of Energy Engineering, Dankook University)
  • Received : 2018.12.18
  • Accepted : 2018.12.27
  • Published : 2018.12.28

Abstract

The high theoretical energy density ($2600Wh\;kg^{-1}$) of Lithium-sulfur batteries and the high theoretical capacity of elemental sulfur ($1672mAh\;g^{-1}$) attract significant research attention. However, the poor electrical conductivity of sulfur and the polysulfide shuttle effect are chronic problems resulting in low sulfur utilization and poor cycling stability. In this study, we address these problems by coating a polyethylene separator with a layer of activated carbon powder. A lithium-sulfur cell containing the activated carbon powder-coated separator exhibits an initial specific discharge capacity of $1400mAh\;g^{-1}$ at 0.1 C, and retains 63% of the initial capacity after 100 cycles at 0.2 C, whereas the equivalent cell with a bare separator exhibits a $1200mAh\;g^{-1}$ initial specific discharge capacity, and 50% capacity retention under the same conditions. The activated carbon powder-coated separator also enhances the rate capability. These results indicate that the microstructure of the activated carbon powder layer provides space for the sulfur redox reaction and facilitates fast electron transport. Concurrently, the activated carbon powder layer traps and reutilizes any polysulfides dissolved in the electrolyte. The approach presented here provides insights for overcoming the problems associated with lithium-sulfur batteries and promoting their practical use.

Keywords

References

  1. L. Ma, K. E. Hendrickson, S. Wei and L. A. Archer: Nano Today, 10 (2015) 315. https://doi.org/10.1016/j.nantod.2015.04.011
  2. Y. S. Su, Y. Fu, B. Guo, S. Dai and A. Manthiram: Chem. Eur. J, 19 (2013) 8621. https://doi.org/10.1002/chem.201300886
  3. J. H. Kim , D. J. Lee, H. G. Jung, Y. K. Sun, J. Hassoun and B. Scrosati: Adv Funct Mater., 23 (2013) 1076. https://doi.org/10.1002/adfm.201200689
  4. A. Manthiram, Y. Fu, S. H. Chung, C. Zu and Y. S. Su: Chem. Rev., 114 (2014) 11751. https://doi.org/10.1021/cr500062v
  5. A. Manthiram, S. H. Chung and C. Zu: Adv. Mater., 27 (2015) 1980. https://doi.org/10.1002/adma.201405115
  6. H. Chen, C. Wang, W. Dong, W. Lu, Z. Du and L. Chen: Nano Lett., 15 (2015) 798. https://doi.org/10.1021/nl504963e
  7. Y. X. Yin, S. Xin, Y. G. Guo and L. J. Wan: Angew. Chem. Int. Ed., 52 (2013) 13186. https://doi.org/10.1002/anie.201304762
  8. F. Wu, J. Qian, R. Chen , J. Lu, L. Li, H. Wu, J. Chen, T. Zhao, Y. Ye and K. Amine: ACS Appl. Mater. Interfaces, 6 (2014) 15542. https://doi.org/10.1021/am504345s
  9. R. Xu, I. Belharouak, X. Zhang, R. Chamoun, C. Yu, Y. Ren, A. Nie, R. Shahbazian-yassar, J. Lu, J. C. M. Li and K. Amine: ACS Appl. Mater. Interfaces, 6 (2014) 21938. https://doi.org/10.1021/am504763p
  10. S. Wu, R. Ge, M. Lu, R. Xu and Z. Zhang: Nano Energy, 15 (2015) 379. https://doi.org/10.1016/j.nanoen.2015.04.032
  11. J. J. Kim, H. S. Kim, J. H. Ahn, K. J. Lee, W. C Yoo and Y. E. Sung: J. Power Sources, 306 (2016) 617. https://doi.org/10.1016/j.jpowsour.2015.12.093
  12. K. A. See, Y. S. Jun, J. A. Gerbec, J. K. Sprafke, F. Wudl, G. D. Stucky and R. Seshadri: ACS Appl. Mater. Interfaces, 6 (2014) 10908. https://doi.org/10.1021/am405025n
  13. J. Schuster, G. He, B. Mandlmeier, T. E. Yim, K. T. Lee, T. Bein and L. F. Nazar: Angew. Chem. Int. Ed., 51 (2012) 3591. https://doi.org/10.1002/anie.201107817
  14. Z. Li, J. Zhang and X. W. Lou: Angew. Chem. Int. Ed., 54 (2015) 12886. https://doi.org/10.1002/anie.201506972
  15. R. Ponraj, A. G. Kannan, J. H. Ahn and D. W. Kim: ACS Appl. Mater. Interfaces, 8 (2016) 4000. https://doi.org/10.1021/acsami.5b11327
  16. Z. Zhang, Q. Li, S. Jiang, K. Zhang, Y. Lai and J. Li: Chem. Eur. J., 21 (2015) 1343. https://doi.org/10.1002/chem.201404686
  17. S. H. Lim, R. L. Thankamony, T. E. Yim, H. D. Chu, Y. J. Kim, J. Y. Mun and T. H. Kim: ACS Appl. Mater. Interfaces, 7 (2015) 1401. https://doi.org/10.1021/am508528p
  18. H. Chen, W. Dong, J. Ge, C. Wang, X. Wu, W. Lu and L. Chen: Sci. Rep., 3 (2013) 1910. https://doi.org/10.1038/srep01910
  19. Y. Xiang, J. Li, J. Lei, D. Liu, Z. Xie, D. Qu, K. Li, T. Deng and H. Tang: ChemSusChem, 9 (2016) 3023. https://doi.org/10.1002/cssc.201600943
  20. X. Qian, L. Jin, D. Zhao, X. Yang, S. Wang, S. Wang, X. Shen, D. Rao, S. Yao, Y. Zhou and X. Xi: Electrochim. Acta., 192 (2016) 346. https://doi.org/10.1016/j.electacta.2016.01.225
  21. I. Bauer, S. Thieme, J. Bruckner, H. Althues and S. Kaskel: J. Power Sources, 251 (2014) 417. https://doi.org/10.1016/j.jpowsour.2013.11.090
  22. M. S Gu, J. K. Lee, Y. I. Kim, J. S. Kim, B. Y. Jang, K. T. Lee and B. S. Kim: RSC Adv., 4 (2014) 46940. https://doi.org/10.1039/C4RA09718A
  23. G. C. Li, H. K. Jing, Z. Su, C. Lai, L. Chen, C. C. Yuan, H. H. Li and L. Liu: J. Mater. Chem. A, 3 (2015) 11014. https://doi.org/10.1039/C5TA01970B
  24. S. H. Chung and A. Manthiram : Adv. Funct. Mater., 24 (2014) 5299. https://doi.org/10.1002/adfm.201400845
  25. W. Gu and G. Yushin: Wiley Interdiscip. Rev.: Energy Environ., 3 (2014) 424. https://doi.org/10.1002/wene.102
  26. J. Zhang, J. Xiang, Z. Dong, Y. Liu, Y. Wu, C. Xu and G. Du: Electrochim. Acta., 116 (2014) 146. https://doi.org/10.1016/j.electacta.2013.11.035
  27. A. Jain, R. Balasubramanian and M. P. Srinivasan: Chem. Eng. J., 283 (2016) 789. https://doi.org/10.1016/j.cej.2015.08.014
  28. B. Zhang, M. Xiao, S. Wang, D. Han, S. Song, G. Chen and Y. Meng: ACS Appl. Mater. Interfaces, 6 (2014) 13174. https://doi.org/10.1021/am503069j
  29. N. Yalcin and V. Sevinc: Carbon, 38 (2000) 1943. https://doi.org/10.1016/S0008-6223(00)00029-4
  30. K.V. Kumar, C. V. Calahorro, J. M. Juarez, M. M. Sabio, J. S. Albero and F. R. Reinoso: Chem. Eng. J., 162 (2010) 424. https://doi.org/10.1016/j.cej.2010.04.058
  31. J. G. Wang, K. Xie, B. Wei: Nano Energy, 15 (2015) 413. https://doi.org/10.1016/j.nanoen.2015.05.006
  32. C. Li and Yin L: Part. Part. Syst. Char., 32 (2015) 756. https://doi.org/10.1002/ppsc.201400259
  33. H. L. Wu, L. A. Huff and A. A. Gewirth: ACS Appl. Mater. Interfaces, 7 (2015) 1709. https://doi.org/10.1021/am5072942
  34. G. Zhou, Y. Zhao, C. Zu, A. Manthiram: Nano Energy, 12 (2015) 240. https://doi.org/10.1016/j.nanoen.2014.12.029
  35. T. Xu, J. Song, M. L. Gordin, H. Sohn, Z. Yu, S. Chen and D. Wang: ACS Appl. Mater. Interfaces, 5 (2013) 11355. https://doi.org/10.1021/am4035784