Browse > Article
http://dx.doi.org/10.15681/KSWE.2011.27.5.10

Evaluation of COD Utilization for Biological Nutrient Removal with dPAO in SBBR-MSBR System  

Lee, Hansaem (Department of Environmental Engineering, Korea University)
Han, Jonghun (Korea Amy Academy at Yeong Cheon)
Yun, Zuwhan (Department of Environmental Engineering, Korea University)
Publication Information
Abstract
The combined system of sequencing batch biofilm reactor (SBBR) and membrane SBR (MSBR) was operated with sewage to evaluate the COD utilization for biological nutrient removal (BNR). The SBBR was operated for nitrification reactor, while denitrifying PAO (dPAO) was cultivated in MSBR with anaerobic-anoxic operation. In the SBBR and MSBR system, the enhanced biological phosphorus removal (EBPR) was successfully achieved with higher N removal. The COD utilization in combined SBBR-MSBR system was significantly reduced compared to ordinary BNR (up to 3.1 g SCOD/g (N+P) and 1.6 g SCOD/g (N+P) with different C/N/P ratio). The results suggest that a dPAO process could effectively reduce carbon energy (=COD) requirement. The combination of oxic-SBBR and anaerobic-anoxic MSBR for dPAO utilization could be an attractive alternative to upgrade the process performance in weak sewage.
Keywords
COD utilization; Denitrifying PAO (dPAO); Membrane SBR (MSBR); Sequencing batch biofilm reactor (SBBR);
Citations & Related Records
연도 인용수 순위
  • Reference
1 최의소, 이영행, 길경익, 윤주환(2000). 아질산화-탈질 반응 을 이용한 혐기성 소화조 상징액의 질소 제거. 수질보전 한국물환경학회지, 16(2), pp. 265-273.
2 환경부(2010). 하수도 통계.
3 Bortone, G., Saltarelli, R., Alonso, V., Sorm, R., Wanner, J., and Tilche, A. (1996). Biological anoxic phosphorus removal-The DEPHANOX process. Wat. Sci. Tech., 34(1-2), pp. 119-228.   DOI
4 APHA, WEF and ASCE (2005). Standard Methods for the Examination of Water and Wastewater. 21st Eds., WashingtonDC, USA.
5 Bortone, G., Malaspina, F., Stante, L., and Tilche, A. (1994). Biological nitrogen and phosphorus removal in an anaerobic/ anoxic sequencing batch reactor with separated biofilm nitrification. Wat. Sci. Tech., 30(6), pp. 303-313.
6 Choi, E., Park, J. B., Yun, Z., and Min, K. S. (2008). Design implications on denitrifying PAO in BNR plant. KSCE Journal of Civil Engineering, 12(1), pp. 9-14.   DOI   ScienceOn
7 Chung, J., Kim, Y., Lee, D. J., Shim, H., and Kim, J. O. (2006). Characteristics of denitrifying phosphate accumulating organism in an anaerobic-intermittently aerobic process. Environmental Engineering Science, 23(6), pp. 981-993.   DOI   ScienceOn
8 Han, J., Lee, H., Ko, K. B., Choi, E., and Yun, Z. (2009). Characteristics of Nitrogen and Phosphorus Removal by dPAO in SBR and SBBR, Proc. 3rd IWA-ASPIRE Conference, Oct 18-22, 2009 Taipei, Taiwan.
9 Hao, X., Heijnen, J. J., Qian, Y., and van Loosdrecht, M. C. M. (2001). Contribution of P-bacteria in biological nutrient removal processes to overall effects on the environment. Wat. Sci. Tech., 44(1), pp. 67-76.
10 Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M., Marais, G., and Van Loosdrecht, M. C. M. (1999). Activated sludge model NO.2, ASM2d, Wat. Sci. Tech., 39(1), pp. 165-182.   DOI   ScienceOn
11 Henze, M., Harremoes, P., Jansen, J. C., and Arvin, E. (1995). Wastewater treatment: Biological and chemical processes. Springer, Germany.
12 Kim, M. and Nakhla, G. (2009). Phosphorus fractionation in membrane-assisted biological nutrient removal process. Chemosphere, 76, pp. 1283-1287.   DOI   ScienceOn
13 Kuba, T., van Loosdrecht, M. C. M., and Heijnen, J. J. (1996). Phosphorus and Nitrogen Removal with Minimal COD Requirement by Integration of Denitrifying Dephosphatation and Nitrification in a two-sludge system. Wat. Res., 30(7), pp. 1702-1710.   DOI   ScienceOn
14 Kuba, T., van Loosdrecht, M. C. M., Brandse, F. A., and Heijnen, J. J. (1997). Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants. Wat. Res., 31(4), pp. 777-786.   DOI   ScienceOn
15 Lee, D. S., Jeon, C. O., and Park, J. M. (2001). Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system. Water Res., 35(16), pp. 3968-3976.   DOI   ScienceOn
16 Lee, H., Han, J., and Yun, Z. (2009), Biological Nitrogen and Phosphorus Removal in UCT-type MBR Process. Wat. Sci. Tech., 59(11), pp. 2093-2099.   DOI   ScienceOn
17 Lee, J., Kim J., Lee, C., Yun, Z., and Choi, E. (2005). Biological phosphorus and nitrogen removal with biological aerated filter using denitrifying phosphorus accumulating organism. Wat. Sci. Tech., 52(10-11), pp. 569-578.
18 Makinia, J., Rosenwinkel, K. H., Swinarski, M., and Dobiegala, E. (2006). Experimental and model-based evaluation of the role of denitrifying polyphosphate accumulating organisms at two large scale WWTPs in northern poland. Wat. Sci. Tech., 54(8), pp. 73-81.   DOI   ScienceOn
19 Parker, D., Bott, C. B., Neething, J. B., Pramanik, A., and Murthy, S. (2009). WEF/WERF cooperative study of BNR plants approaching the limit of technology: I. What can we learn about the technologies. Proc. of 82nd Water Environment Federation Technical Exhibition and Conference 2009, 4543-4559, October 10-14, Orlando, Florida, USA.
20 Neethling, J., Stensel, D., Parker, D., Bott, D., Murthy, S., Pramanik, A., and Clark, D. (2009). What is limit of technology (LOT): a rational and quantitative approach. Wat. Env. Fed., pp. 5917-5930.
21 Peric, M., Neupane, D., Stinson, B., Locke, E., Kharkar, S., Passarelli, N., Sultan, M., Shin, G., Murthy, S., Bailey, W., Carr, J., and Minassian, R. (2009). Phosphorus requirements in a post denitrification MBBR at a combined limit of technology nitrogen and phosphorus plant. Wat. Env. Fed., pp. 2231-2245.
22 Schenkelberg, K. and Horton, B. (2009). Application of membrane bioreactor technology to meet stringent load limits on Virginia's Eastern Shore. Wat. Env. Fed., pp. 2203-2215.
23 Shoolroy, L. and Mallett, C. (2009). WWTP optimization to achieve effluent total phosphorus levels less than 0.15 mg/L without chemicals or filtration. Proc. of 82nd Water Environment Federation Technical Exhibition and Conference 2009, 4484-4500, October 10-14, Orlando, Florida, USA.
24 Smolders, G. J. F., van der Meij, J., van Loosdrecht M. C. M., and Heijen, J. J. (1994). Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process. Biotech. Bioeng., 44, pp. 837-848.   DOI   ScienceOn
25 Smolders, G. J. F. (1995). A metabolic model of the biological phosphorus removal-stoichiometry, kinetics and dynamic behaviour. Ph. D. thesis, Delft Univ. of Tech.
26 Stinson, B., Peric, m., Neupane, D., Laquidara, M., Locke, E., Murthy, S., Bailey, W., Kharkar, S., Passarelli, N., Derminassian, R., Carr, J., Sultan, M., Shin, G., Barnard, J., Daigger, G., Parker, D., Randall, C., and Wilson, T. (2009). Design and operating considerations for a post denitrification MBBR to achieve limit of technology effluent NOX < 1 mh/L and Effluent TP < 0.18 mg/L. Wat. Env. Fed., pp. 4357-4377.
27 Toit, G. J. G., Ramphao, M. C., Parco, V., Wentzel, M. C., and Ekama, G. A. (2007). Design and performance of BNR activated sludge systems with flat sheet membranes for solid-liquid separation. Wat. Sci. Tech., 56(6), pp. 105-113.   DOI   ScienceOn
28 Vlekke, G. J. F. M. (1988). Biological phosphate removal from wastewater with oxygen or nitrate in sequencing batch reactors. Environmental Technology Letters, 9, pp. 791-796.   DOI
29 Van Loosdrecht, M. C. M., Brandse, F. A., and De Vries, A. C. (1998). Upgrading of wastewater treatment processes for integrated nutrient removal the BCFS process. Wat. Sci. Tech., 37(9), pp. 209-217.   DOI   ScienceOn
30 Vargas, M., Guisasola, A., Lafuente, J., Casas, C., and Baeza, J. A. (2008). On-line titrimetric monitoring of the anaerobicanoxic EBPR process. Wat. Sci. Tech., 57(8), pp. 1149-1154.   DOI   ScienceOn
31 Wang, Y. Y., Pan, M. L., Peng, Y. Z., and Wang, S. Y. (2007). Characteristics of anoxic phosphorus removal in sequence batch reactor. Journal of Environmental Sciences, 19, pp. 776-782.   DOI   ScienceOn
32 Wang, Y. Y., Peng, Y. Z., Li, T. W., Ozaki, M., Takigawa, A., and Wang, S. Y. (2004). Phosphorus removal under anoxic conditions in a continuous-flow A2N two sludge process. Wat. Sci. Tech., 50(6), pp. 37-44.
33 Wilderer, P. A. (1992). Sequencing batch biofilm reactor technology. Harnessing biotechnology for the 21th century. M. R. Ladisch and A. Bose (eds.), Amer. Chem. Soc., pp. 475-479.
34 Wingender, J., Neu, T. R., and Hlemming, H. C. (1999). Microbial Extracellular Polymeric Substances: Characterization, Structure and Function. Springer, Berlin.
35 Yuan, Q. and Oleszkiewicz, J. (2009). Selection and enrichment of denitrifying phosphorus accumulating organisms in activated sludge, Proc. of 82nd Water Environment Federation Technical Exhibition and Conference 2009, 4330-4341, October 10-14, Orlando, Florida, USA.