Browse > Article
http://dx.doi.org/10.4150/KPMI.2018.25.6.466

A Separator with Activated Carbon Powder Layer to Enhance the Performance of Lithium-Sulfur Batteries  

Vu, Duc-Luong (Department of Energy Engineering, Dankook University)
Lee, Jae-Won (Department of Energy Engineering, Dankook University)
Publication Information
Journal of Powder Materials / v.25, no.6, 2018 , pp. 466-474 More about this Journal
Abstract
The high theoretical energy density ($2600Wh\;kg^{-1}$) of Lithium-sulfur batteries and the high theoretical capacity of elemental sulfur ($1672mAh\;g^{-1}$) attract significant research attention. However, the poor electrical conductivity of sulfur and the polysulfide shuttle effect are chronic problems resulting in low sulfur utilization and poor cycling stability. In this study, we address these problems by coating a polyethylene separator with a layer of activated carbon powder. A lithium-sulfur cell containing the activated carbon powder-coated separator exhibits an initial specific discharge capacity of $1400mAh\;g^{-1}$ at 0.1 C, and retains 63% of the initial capacity after 100 cycles at 0.2 C, whereas the equivalent cell with a bare separator exhibits a $1200mAh\;g^{-1}$ initial specific discharge capacity, and 50% capacity retention under the same conditions. The activated carbon powder-coated separator also enhances the rate capability. These results indicate that the microstructure of the activated carbon powder layer provides space for the sulfur redox reaction and facilitates fast electron transport. Concurrently, the activated carbon powder layer traps and reutilizes any polysulfides dissolved in the electrolyte. The approach presented here provides insights for overcoming the problems associated with lithium-sulfur batteries and promoting their practical use.
Keywords
Lithium-sulfur battery; activated carbon powder; coating; separator; shuttle effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Ma, K. E. Hendrickson, S. Wei and L. A. Archer: Nano Today, 10 (2015) 315.   DOI
2 Y. S. Su, Y. Fu, B. Guo, S. Dai and A. Manthiram: Chem. Eur. J, 19 (2013) 8621.   DOI
3 J. H. Kim , D. J. Lee, H. G. Jung, Y. K. Sun, J. Hassoun and B. Scrosati: Adv Funct Mater., 23 (2013) 1076.   DOI
4 A. Manthiram, Y. Fu, S. H. Chung, C. Zu and Y. S. Su: Chem. Rev., 114 (2014) 11751.   DOI
5 A. Manthiram, S. H. Chung and C. Zu: Adv. Mater., 27 (2015) 1980.   DOI
6 H. Chen, C. Wang, W. Dong, W. Lu, Z. Du and L. Chen: Nano Lett., 15 (2015) 798.   DOI
7 Y. X. Yin, S. Xin, Y. G. Guo and L. J. Wan: Angew. Chem. Int. Ed., 52 (2013) 13186.   DOI
8 F. Wu, J. Qian, R. Chen , J. Lu, L. Li, H. Wu, J. Chen, T. Zhao, Y. Ye and K. Amine: ACS Appl. Mater. Interfaces, 6 (2014) 15542.   DOI
9 R. Xu, I. Belharouak, X. Zhang, R. Chamoun, C. Yu, Y. Ren, A. Nie, R. Shahbazian-yassar, J. Lu, J. C. M. Li and K. Amine: ACS Appl. Mater. Interfaces, 6 (2014) 21938.   DOI
10 S. Wu, R. Ge, M. Lu, R. Xu and Z. Zhang: Nano Energy, 15 (2015) 379.   DOI
11 J. J. Kim, H. S. Kim, J. H. Ahn, K. J. Lee, W. C Yoo and Y. E. Sung: J. Power Sources, 306 (2016) 617.   DOI
12 K. A. See, Y. S. Jun, J. A. Gerbec, J. K. Sprafke, F. Wudl, G. D. Stucky and R. Seshadri: ACS Appl. Mater. Interfaces, 6 (2014) 10908.   DOI
13 J. Schuster, G. He, B. Mandlmeier, T. E. Yim, K. T. Lee, T. Bein and L. F. Nazar: Angew. Chem. Int. Ed., 51 (2012) 3591.   DOI
14 Z. Li, J. Zhang and X. W. Lou: Angew. Chem. Int. Ed., 54 (2015) 12886.   DOI
15 H. Chen, W. Dong, J. Ge, C. Wang, X. Wu, W. Lu and L. Chen: Sci. Rep., 3 (2013) 1910.   DOI
16 R. Ponraj, A. G. Kannan, J. H. Ahn and D. W. Kim: ACS Appl. Mater. Interfaces, 8 (2016) 4000.   DOI
17 Z. Zhang, Q. Li, S. Jiang, K. Zhang, Y. Lai and J. Li: Chem. Eur. J., 21 (2015) 1343.   DOI
18 S. H. Lim, R. L. Thankamony, T. E. Yim, H. D. Chu, Y. J. Kim, J. Y. Mun and T. H. Kim: ACS Appl. Mater. Interfaces, 7 (2015) 1401.   DOI
19 Y. Xiang, J. Li, J. Lei, D. Liu, Z. Xie, D. Qu, K. Li, T. Deng and H. Tang: ChemSusChem, 9 (2016) 3023.   DOI
20 X. Qian, L. Jin, D. Zhao, X. Yang, S. Wang, S. Wang, X. Shen, D. Rao, S. Yao, Y. Zhou and X. Xi: Electrochim. Acta., 192 (2016) 346.   DOI
21 I. Bauer, S. Thieme, J. Bruckner, H. Althues and S. Kaskel: J. Power Sources, 251 (2014) 417.   DOI
22 M. S Gu, J. K. Lee, Y. I. Kim, J. S. Kim, B. Y. Jang, K. T. Lee and B. S. Kim: RSC Adv., 4 (2014) 46940.   DOI
23 G. C. Li, H. K. Jing, Z. Su, C. Lai, L. Chen, C. C. Yuan, H. H. Li and L. Liu: J. Mater. Chem. A, 3 (2015) 11014.   DOI
24 S. H. Chung and A. Manthiram : Adv. Funct. Mater., 24 (2014) 5299.   DOI
25 W. Gu and G. Yushin: Wiley Interdiscip. Rev.: Energy Environ., 3 (2014) 424.   DOI
26 J. Zhang, J. Xiang, Z. Dong, Y. Liu, Y. Wu, C. Xu and G. Du: Electrochim. Acta., 116 (2014) 146.   DOI
27 A. Jain, R. Balasubramanian and M. P. Srinivasan: Chem. Eng. J., 283 (2016) 789.   DOI
28 K.V. Kumar, C. V. Calahorro, J. M. Juarez, M. M. Sabio, J. S. Albero and F. R. Reinoso: Chem. Eng. J., 162 (2010) 424.   DOI
29 B. Zhang, M. Xiao, S. Wang, D. Han, S. Song, G. Chen and Y. Meng: ACS Appl. Mater. Interfaces, 6 (2014) 13174.   DOI
30 N. Yalcin and V. Sevinc: Carbon, 38 (2000) 1943.   DOI
31 J. G. Wang, K. Xie, B. Wei: Nano Energy, 15 (2015) 413.   DOI
32 C. Li and Yin L: Part. Part. Syst. Char., 32 (2015) 756.   DOI
33 H. L. Wu, L. A. Huff and A. A. Gewirth: ACS Appl. Mater. Interfaces, 7 (2015) 1709.   DOI
34 G. Zhou, Y. Zhao, C. Zu, A. Manthiram: Nano Energy, 12 (2015) 240.   DOI
35 T. Xu, J. Song, M. L. Gordin, H. Sohn, Z. Yu, S. Chen and D. Wang: ACS Appl. Mater. Interfaces, 5 (2013) 11355.   DOI