• Title/Summary/Keyword: carbon precursor

Search Result 422, Processing Time 0.032 seconds

MOCVD 법에 의한 Ruthenium 박막의 증착 및 특성 분석

  • 강상열;최국현;이석규;황철성;석창길;김형준
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.152-152
    • /
    • 1999
  • 1Gb급 이상 기억소자의 캐패시터 재료로 주목받고 있는 (Ba,Sr)TiO3 [BST] 박막의 전극재료로는 Pt, Ru, Ir과 같은 금속전극과 RuO2, IrO2와 산화물 전도체가 유망한 것으로 알려져 있다. 그런데, DRAM의 집적도가 증가하게 되면, BST같은 고유전율 박막을 유전재료로 사용한다 하더라도, 3차원적인 구조가 불가피하게 때문에 기존의 sputtering 방법으로는 우수한 단차피복성을 얻기 힘들므로, MOCVD법이 필수적이다. 본 연구에서는 기존에 연구되었던 Pt에 비해 식각특성이 우수하고, 비교적 낮은 비저항을 갖는 Ru 박막증착에 대한 연구를 행하였다. 본 연구에서는 수직형의 반응기와 저항 가열 방식의 susceptor로 구성된 저압 유기금속 화학증착기를 사용하여 최대 6inch 직경을 갖는 기판 위에 Ru박막을 증착하였다. Precursor로는 기존에 연구된 적이 없는 bis-(ethyo-$\pi$-cyclopentadienyl)Ru (Ru(C5H4C2H5)2, [Ru(EtCp)2])를 사용하였으며, bubbler의 온도는 85$^{\circ}C$로 하였다. Si, SiO2/Si를 사용하였으며, 증착온도 25$0^{\circ}C$~40$0^{\circ}C$, 증착압력 3Torr의 조건에서 Ru 박막을 증착하였다. Presursor를 운반하는 수송기체로는 Ar을 사용하였으며, carbon과 같은 불순물의 제거를 위해 O2를 첨가하였다. 증착된 박막은 XRD, SEM, 4-point probe등을 통해 구조적, 전기적 특성을 평가하였으며, 열역학 계산을 위해서는 SOLGASMIX-PV프로그램을 사용하였다. Ru 박막의 증착에 있어서 산소의 첨가는 필수적이었으며, Ru 박막의 증착속도는 30$0^{\circ}C$~40$0^{\circ}C$의 온도 영역에서 200$\AA$/min으로 일정하였으며, 첨가된 산소의 양이 적을수록 더 치밀하고 평탄한 표면형상을 보였으며, 또한 더 낮은 전기 전도도를 보였다. 그리고 증착된 박막은 12~15$\mu$$\Omega$cm 정도의 낮은 비저항 값을 나타냈으며 이것은 기존의 sputtering 법에 의해 증착된 Ru 박막의 비저항 값들과 비교될만하다. 한편, 높은 온도, 높은 산소분압 조건에서 RuO2의 형성을 관찰하였으며, 이것은 열역학적인 계산을 통해서 잘 설명할 수 있었다.

  • PDF

A Study on the Electrochemical Synthesis of L-DOPA Using Oxidoreductase Enzymes: Optimization of an Electrochemical Process

  • Rahman, Siti Fauziyah;Gobikrishnan, Sriramulu;Indrawan, Natarianto;Park, Seok-Hwan;Park, Jae-Hee;Min, Kyoungseon;Yoo, Young Je;Park, Don-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1446-1451
    • /
    • 2012
  • Levodopa or L-3,4-dihydroxyphenylalanine (L-DOPA) is the precursor of the neurotransmitter dopamine. L-DOPA is a famous treatment for Parkinson's disease symptoms. In this study, electroenzymatic synthesis of L-DOPA was performed in a three-electrode cell, comprising a Ag/AgCl reference electrode, a platinum wire auxiliary electrode, and a glassy carbon working electrode. L-DOPA had an oxidation peak at 376 mV and a reduction peak at -550 mV. The optimum conditions of pH, temperature, and amount of free tyrosinase enzyme were pH 7, $30^{\circ}C$, and 250 IU, respectively. The kinetic constant of the free tyrosinase enzyme was found for both cresolase and catacholase activity to be 0.25 and 0.4 mM, respectively. A cyclic voltammogram was used to investigate the electron transfer rate constant. The mean heterogeneous electron transfer rate ($k_e$) was $5.8{\times}10^{-4}$ cm/s. The results suggest that the electroenzymatic method could be an alternative way to produce L-DOPA without the use of a reducing agent such as ascorbic acid.

SOx and NOx removal performance by a wet-pulse discharge complex system (습식-펄스방전 복합시스템의 황산화물 및 질소산화물 제거성능 특성)

  • Park, Hyunjin;Lee, Whanyoung;Park, Munlye;Noh, Hakjae;You, Junggu;Han, Bangwoo;Hong, Keejung
    • Particle and aerosol research
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • Current desulfurization and denitrification technologies have reached a considerable level in terms of reduction efficiency. However, when compared with the simultaneous reduction technology, the individual reduction technologies have issues such as economic disadvantages due to the difficulty to scale-up apparatus, secondary pollution from wastewater/waste during the treatment process, requirement of large facilities for post-treatment, and increased installation costs. Therefore, it is necessary to enable practical application of simultaneous SOx and NOx treatment technologies to remove two or more contaminants in one process. The present study analyzes a technology capable of maintaining simultaneous treatment of SOx and NOx even at low temperatures due to the electrochemically generated strong oxidation of the wet-pulse complex system. This system also reduces unreacted residual gas and secondary products through the wet scrubbing process. It addresses common problems of the existing fuel gas treatment methods such as SDR, SCR, and activated carbon adsorption (i.e., low treatment efficiency, expensive maintenance cost, large installation area, and energy loss). Experiments were performed with varying variables such as pulse voltage, reaction temperature, chemicals and additives ratios, liquid/gas ratio, structure of the aeration cleaning nozzle, and gas inlet concentration. The performance of individual and complex processes using the wet-pulse discharge reaction were analyzed and compared.

Prechlorination at Water Intake for the Quality Improvement of Raw Water (상수원수 수질개선을 위한 취수장 전염소 투입에 관한 연구)

  • Kim, Daehyun;Hwang, Suok;Jeong, Eunjae;Shin, Changsoo;Yu, Youngbeom;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.110-114
    • /
    • 2011
  • In this paper, in order to eliminate Limnoperna fortunei inhabiting the water conduction pipeline, prechlorination at the intake station was employed to improve the degradation of water quality due to the high pH of raw water taken at the downstream of Paldang Dam, algal growth, etc.. With the prechlorination concentration of 1.0mg/L at the intake station, the pH in the water well at the treatment plant decreased by 0.4, and with 1.5mg/L, by 0.6. Also, it eliminated Chlorophyll-a by about 95%, and the population of algae by about 49%. Such disinfection by-products (DBPs) as Trihalomathanes (THMs), Haloacetic Acids (HAAs), and Chloral Hydrate (CH) were under the quality standard for potable water, showing no change by the prechlorination, while raising the prechlorination rate from 1.0 up to 1.5mg/L, the DBPs in the water well increased by 1.5 to 3.1 times. As a consequence of testing Kyungan Stream, a branch stream flowing into Lake Paldang, the prechlorination (0.57mg/L, 1.14mg/L, 1.71mg/L) had no effect of eliminating the taste and odor compounds and total organic carbon (TOC) which is the DBPs precursor. As for the efficiency of Geosmin elimination by the rates of prechlorination and powder activated carbonation (PAC), it was found that the higher the concentration of PAC was (30ppm>20ppm>10ppm), the higher the efficiency was; the higher the rate of prechlorination was, the lower the efficiency by PAC was. Therefore, when taste and odor occur from raw water, suspending prechlorination at the intake or lowering the rate was proved to be more effective in eliminating the taste and odor compounds by PAC.

Bimetallic Zeolitic Imidazolate Framework Derived Co3O4/CoFe2O4 Catalyst Loaded In2O3 Nanofibers for Highly Sensitive and Selective Ethanol Sensing (금속-유기 골격체 열분해를 통해 합성된 Co3O4/CoFe2O4 첨가 In2O3나노섬유를 이용한 고감도 고선택성 에탄올 센서)

  • Lee, Soo-Min;Kim, Tae-Hyun;Jo, Young-Moo;Kim, Ki Beom;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.94-98
    • /
    • 2021
  • In this study, pure and Co3O4/CoFe2O4-loaded Indium oxide (In2O3) nanofibers were synthesized by the electrospinning of an Indium/Polyvinylpyrrolidone precursor solution containing cobalt and iron bimetallic zeolitic imidazolate frameworks and subsequent heat treatment. The ethanol, toluene, p-xylene, benzene, carbon monodxide, and hydrogen gas sensing characteristics of the solution were measured at 250-400 ℃. 0.5 at%-Co3O4/CoFe2O4-loaded In2O3 nanofibers exhibited extreme response (resistance ratio - 1) to 5 ppm of ethanol (210.5) at 250 ℃ and excellent selectivity over the interfering gases. In contrast, pure In2O3 nanofibers exhibited relatively low responses to all the analyte gases and low selectivity above 250-400 ℃. The superior response and selectivity toward ethanol is explained by the catalytic roles of Co3O4 and CoFe2O4 in gas sensing reaction and the electronic sensitization induced by the formation of p (Co3O4/CoFe2O4)-n (In2O3) junctions.

Enhanced Environmental Stability of Graphene Field-Effect Transistors through Interface Control (계면 제어를 통한 그래핀 기반 전계효과 트랜지스터의 환경 안정성 향상)

  • Seong, Jun Ho;Lee, Dong Hwa;Lee, Eunho
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.75-79
    • /
    • 2022
  • Graphene is a two-dimensional carbon allotrope composed of honeycomb sp2 hybrid orbital bonds. It shows excellent electrical and mechanical properties and has been spotlighted as a core material for next-generation electronic devices. However, it exhibits low environmental stability due to the easy penetration or adsorption of external impurities from the formation of an unstable interface between the materials in the electronic devices. Therefore, this work aims to improve and investigate the low environmental stability of graphene-based field-effect transistors through direct growth using solid hydrocarbons as a precursor of graphene. Graphene synthesized from direct growth shows high electrical stability through reduction of change in charge mobility and Dirac voltage. Through this, a new approach to utilize graphene as a core material for next-generation electronic devices is presented.

Development of a High-Titer Culture Medium for the Production of Cholesterol by Engineered Saccharomyces cerevisiae and Its Fed-Batch Cultivation Strategy

  • Wang, Ling-Xu;Zheng, Gao-Fan;Xin, Xiu-Juan;An, Fa-Liang
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1178-1185
    • /
    • 2022
  • Steroids are a class of compounds with cyclopentane polyhydrophenanthrene as the parent nucleus, and they usually have unique biological and pharmacological activities. Most of the biosynthesis of steroids is completed by a series of enzymatic reactions starting from cholesterol. Synthetic biology can be used to synthesize cholesterol in engineered microorganisms, but the production of cholesterol is too low to further produce other high-value steroids from cholesterol as the raw material and precursor. In this work, combinational strategies were established to increase the production of cholesterol in engineered Saccharomyces cerevisiae RH6829. The basic medium for high cholesterol production was selected by screening 8 kinds of culture media. Single-factor optimization of the carbon and nitrogen sources of the culture medium, and the addition of calcium ions, zinc ions and citric acid, further increased the cholesterol production to 192.53 mg/l. In the 5-L bioreactor, through the establishment of strategies for glucose and citric acid feeding and dissolved oxygen regulation, the cholesterol production was further increased to 339.87 mg/l, which was 734% higher than that in the original medium. This is the highest titer of cholesterol produced by microorganisms currently reported. The fermentation program has also been conducted in a 50-L bioreactor to prove its stability and feasibility.

Initial Ignition Time and Calorific Value Enhancement of Briquette with Added Pine Resin

  • Gustan PARI;Lisna EFIYANTI;Saptadi DARMAWAN;Nur Adi SAPUTRA;Djeni HENDRA;Joseph ADAM;Alfred INKRIWANG;Rachman EFFENDI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.207-221
    • /
    • 2023
  • The increasing demand for clean energy requires considerable effort to find alternative energy sources, such as briquettes. This research aims to develop a charcoal briquette with added pine resin (API) that has excellent combustion speed and distinctive aroma. Briquettes are composed of charcoal, pine resin (concentration: 0%-30%), and starch (up to 7%). They are produced in several stages, including coconut shell pyrolysis in conventional combustion, to obtain charcoal for the briquette precursor. Briquette compaction is conducted by mixing and densifying the charcoal, pine resin, and starch using a hydraulic press for 3 min. The hydraulic press has a total surface area and diameter of 57.7 cm2 and 3.5 cm, respectively. The briquettes are dried at different temperatures, reaching 70℃ for 24 h. The study results show that the briquettes have a thickness and diameter of up to 2 and 3.5 cm, respectively; moisture of 2.18%-2.62%; ash of 11.61%-13.98%; volatile matter of 27.15%-51.74%; and fixed carbon content of 40.24%-59.46%. The compressive strength of the briquettes is 186-540 kg/cm2. Their calorific value is 5,338-6,120 kcal/kg, combusting at a high speed of 0.15-0.40 s. The methoxy naphthalene, phenol, benzopyrrole, and lauryl alcohol; ocimene, valencene, and cembrene are found in the API. The API briquette has several chemical compounds, such as musk ambrette, ocimene, sabinene, limonene, 1-(p-cumenyl) adamantane, butane, and propanal, which improve aroma, drug application, and fuel production. Accordingly, API briquettes have considerable potential as an alternative energy source and a health improvement product.

Nano particle size control of Pt/C catalysts manufactured by the polyol process for fuel cell application (폴리올법으로 제조된 Pt/C 촉매의 연료전지 적용을 위한 나노 입자 크기제어)

  • Joon Heo;Hyukjun Youn;Ji-Hun Choi;Chae Lin Moon;Soon-Mok Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.437-442
    • /
    • 2023
  • This research aims to enhance the efficiency of Pt/C catalysts due to the limited availability and high cost of platinum in contemporary fuel cell catalysts. Nano-sized platinum particles were distributed onto a carbon-based support via the polyol process, utilizing the metal precursor H2PtCl6·6H2O. Key parameters such as pH, temperature, and RPM were carefully regulated. The findings revealed variations in the particle size, distribution, and dispersion of nano-sized Pt particles, influenced by temperature and pH. Following sodium hydroxide treatment, heat treatment procedures were systematically executed at diverse temperatures, specifically 120, 140, and 160 ℃. Notably, the thermal treatment at 140 ℃ facilitated the production of Pt/C catalysts characterized by the smallest platinum particle size, measuring at 1.49 nm. Comparative evaluations between the commercially available Pt/C catalysts and those synthesized in this study were meticulously conducted through cyclic voltammetry, X-ray diffraction (XRD), and field-emission scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM EDS) methodologies. The catalyst synthesized at 160 ℃ demonstrated superior electrochemical performance; however, it is imperative to underscore the necessity for further optimization studies to refine its efficacy.

Nanostructure Control of PtNiN/C Catalysts for Oxygen Reduction Reaction by Regulating Displacement Rate of Precursor (전구체 치환 속도 조절을 통한 산소환원반응용 PtNiN/C 촉매의 나노구조 제어)

  • Dong-gun Kim;Seongseop Kim;Sung Jong Yoo;Pil Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.55-61
    • /
    • 2024
  • Efforts are actively underway to address the issues related to the high cost of Pt-based catalysts for oxygen reduction reactions by designing high-performance Pt-based alloys through the control of their nanostructures. In this study, a method was proposed to control the nanostructure of Pt-based alloys, either hollow or core-shell, by adjusting the pH of the solution during the galvanic replacement reaction between the carbon-supported nickel-nickel nitride composite and the Pt ions. The physical characteristics, including the state, quantity, and morphology of the metal particles under different preparation conditions, were evaluated through X-ray diffraction, transmission electron microscopy, and inductively coupled plasma. When the prepared catalysts were employed for the oxygen reduction reaction, they exhibited an improvement in area specific-activity compared to a commercial Pt/C, with a 1.7 and 1.9-fold enhancement for the hollow and core-shell structured catalysts, respectively.