Browse > Article
http://dx.doi.org/10.4014/jmb.1206.06043

A Study on the Electrochemical Synthesis of L-DOPA Using Oxidoreductase Enzymes: Optimization of an Electrochemical Process  

Rahman, Siti Fauziyah (Interdisciplinary Program of Bioenergy and Biomaterial Engineering, Chonnam National University)
Gobikrishnan, Sriramulu (Interdisciplinary Program of Bioenergy and Biomaterial Engineering, Chonnam National University)
Indrawan, Natarianto (Interdisciplinary Program of Bioenergy and Biomaterial Engineering, Chonnam National University)
Park, Seok-Hwan (Interdisciplinary Program of Bioenergy and Biomaterial Engineering, Chonnam National University)
Park, Jae-Hee (Interdisciplinary Program of Bioenergy and Biomaterial Engineering, Chonnam National University)
Min, Kyoungseon (Clean Energy Research Center, Korea Institute of Science and Technology)
Yoo, Young Je (School of Chemical and Biological Engineering, Seoul National University)
Park, Don-Hee (Interdisciplinary Program of Bioenergy and Biomaterial Engineering, Chonnam National University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.10, 2012 , pp. 1446-1451 More about this Journal
Abstract
Levodopa or L-3,4-dihydroxyphenylalanine (L-DOPA) is the precursor of the neurotransmitter dopamine. L-DOPA is a famous treatment for Parkinson's disease symptoms. In this study, electroenzymatic synthesis of L-DOPA was performed in a three-electrode cell, comprising a Ag/AgCl reference electrode, a platinum wire auxiliary electrode, and a glassy carbon working electrode. L-DOPA had an oxidation peak at 376 mV and a reduction peak at -550 mV. The optimum conditions of pH, temperature, and amount of free tyrosinase enzyme were pH 7, $30^{\circ}C$, and 250 IU, respectively. The kinetic constant of the free tyrosinase enzyme was found for both cresolase and catacholase activity to be 0.25 and 0.4 mM, respectively. A cyclic voltammogram was used to investigate the electron transfer rate constant. The mean heterogeneous electron transfer rate ($k_e$) was $5.8{\times}10^{-4}$ cm/s. The results suggest that the electroenzymatic method could be an alternative way to produce L-DOPA without the use of a reducing agent such as ascorbic acid.
Keywords
L-DOPA; electrochemical synthesis; tyrosinase; Parkinson's disease;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Chuang, G.-S., A.-C. Chao, M.-S. Chiou, and S.-S. Shyu. 2005. Immobilization of tyrosinase on chitosan - An optimal approach to enhance the productivity of L-DOPA from L-tyrosine. J. Chin. Chem. Soc. 52: 353-362.
2 Hedge, R. N., B. E. Kumara Swamy, B. S. Sherigara, and S. T. Nandibewoor. 2008. Electro-oxidation of atenolol at a glassy carbon electrode. Int. J. Electrochem. Sci. 3: 302-314.
3 Ho, P. Y., M. S. Chiou, and A. C. Chao. 2003. Production of L-dopa by tyrosinase immobilized on modified polystyrene. Appl. Biochem. Biotechnol. 3: 139-152.
4 Huang, S.-Y., Y.-W. Shen, and H.-S. Chan. 2002. Development of a bioreactor operation strategy for L-DOPA production using Stizolobium hassjoo suspension culture. Enzyme Microb. Technol. 30: 779-791.   DOI   ScienceOn
5 Katzung, B. G. 2004. Basic and Clinical Pharmacology, pp. 634-655, 9th Ed. McGraw-Hill, San Francisco.
6 Knowles, W. S., M. J. Sabacky, and B. D. Vineyad. 1977. LDOPA process and intermediates. United States Patent. US4005127.
7 Kyanagi, T., T. Katayama, H. Suzuki, H. Nakazawa, K. Yokozeki, and H. Kumagai. 2005. Effective production of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) with Erwinia herbicola cells carrying a mutant transcriptional regulator TyrR. J. Biotechnol. 115: 303-306.   DOI   ScienceOn
8 Liu, X., Z. Zhang, G. Cheng, and S. Dong. 2003. Spectroelectrochemical and voltammetric studies of L-DOPA. Electroanal. Chem. 15: 103-107.   DOI   ScienceOn
9 Min, K., D. H. Park, and Y. J. Yoo. 2010. Electroenzymatic synthesis of L-DOPA. J. Biotechnol. 146: 40-44.   DOI   ScienceOn
10 Park, H. S., J. Y. Lee, and H. S. Kim. 1998. Production of LDOPA (3,4-dihydroxyphenyl-L-alanine) from benzene by using a hybrid pathway. Biotechnol. Bioeng. 58: 339-343.   DOI   ScienceOn
11 Pialis, P., M. C. Jimenez Hamann, and B. A. Saville. 1996. LDOPA production from tyrosinase immobilized on nylon 6,6. Biotechnol. Bioeng. 51: 141-147.   DOI   ScienceOn
12 Raoof, J. B., R. Ojani, and Z. Mohammadpour. 2010. Electrocatalytic oxidation and voltammetric determination of hydrazine by 1,1-ferrocenedicarboxylic acid at glassy carbon electrode. Int. J. Electrochem. Sci. 5: 177-188.
13 Ros, J. R., J. N. R. Lopez, and G. G. Canovas. 1993. Effect of L-ascorbic acid on the monophenolase activity of tyrosinase. Biochem. J. 295: 309-312.
14 Sayyed, I. A. and A. Sudalai. 2004. Asymmetric synthesis of $_L$-DOPA and (R)-selegiline via $OsO_4$-catalyzed asymmetric dihydroxylation. Tetrahedron Asymmetry 15: 3111-3116.   DOI   ScienceOn
15 Seetharam, G. and B. A. Saville. 2002. DOPA production from tyrosinase immobilized on zeolite. Enzyme Microb. Technol. 31: 747-753.   DOI   ScienceOn
16 Tuncagil, S., S. K. Kayahan, G. Bayramoglu, M. Y. Arica, and L. Toppare. 2009. L-DOPA synthesis using tyrosinase immobilized on magnetic beads. J. Mol. Catal. B 58: 187-193.   DOI   ScienceOn
17 Andriani, D., C. S. Sunwoo, H. W. Ryu, B. Prasetya, and D. H. Park. 2012. Immobilization of cellulose from newly isolated strain Bacillus subtilis TD6 using calcium alginate as support material. Bioprocess Biosyst. Eng. 35: 29-33.   DOI
18 Ardakani, M. M., H. Rajabi, and H. Bietollahi. 2009. Electrocatalytic oxidation of cysteine by indigo carmine modified glassy carbon electrode. J. Argent. Chem. Soc. 97: 106-115.
19 Ates, S., E. Cortenlioglu, E. Bayraktar, and U. Mehmetoglu. 2007. Production of L-DOPA using Cu-alginate gel immobilized tyrosinase in a batch and packed bed reactor. Enzyme Microb. Technol. 40: 683-687.   DOI   ScienceOn
20 Barbero, C. J. J. Silber, and L. Sereno. 1988. Studies of surfacemodified glassy carbon electrode obtained by electrochemical treatment. J. Electroanal. Chem. 248: 321-340.   DOI   ScienceOn
21 Bard, A. J. and L. R. Faulkner. 2001. Electrochemical Methods: Fundamentals and Applications, pp. 92-98, 2nd Ed. Wiley, New York.
22 Blaser, H. U. and E. Schmidt (eds.). 2004. Asymmetric Catalysis on Industrial Scale: Challenges, Approaches, and Solutions, pp. 23-38. Wiley-VCH Verlag GmbH & Co, Weinheim.