• Title/Summary/Keyword: carbon nanotubes(CNT)

Search Result 545, Processing Time 0.028 seconds

Selective Nitrogen Doping of Carbon Nanotubes Through Different Mechanical Mixing Methods with Melamine (멜라민과의 기계적 혼합을 통한 탄소나노튜브의 선택적 질소 도핑)

  • Seon-Yeon Kim;Taewoo Kim;Seung-Yeol Jeon
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.408-415
    • /
    • 2023
  • The formation of bonding configurations such as pyridinic-N, pyrrolic-N, and graphitic-N by nitrogen doping plays a crucial role in imparting distinct physical properties to carbon nanomaterials. In this study, we propose a simple and cost-effective approach to regulate nitrogen dopant configurations in carbon nanotubes (CNTs) by mixing melamine as a dopant source. We employed three distinct mechanical mixing techniques, namely magnetic stirring, bath sonication and tip sonication. The higher the ratio of melamine to CNT, the higher the ratio of Pyrrolic-N, and when mixed through stirring, the highest ratio of Pyridinic-N was shown. The facile method proposed in this study, which can easily form various types of nitrogen dopants in carbon nanotubes, is expected to facilitate the application of nitrogen-doped carbon nanomaterials.

Geometrically nonlinear thermo-mechanical bending analysis of deep cylindrical composite panels reinforced by functionally graded CNTs

  • Salami, Sattar Jedari;Boroujerdy, Mostafa Sabzikar;Bazzaz, Ehsan
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.385-395
    • /
    • 2021
  • This research concentrates on the effects of distributions and volume fractions of carbon nanotubes (CNT) on the nonlinear bending behavior of deep cylindrical panels reinforced by functionally graded carbon nanotubes under thermo-mechanical loading, hitherto not reported in the literature. Assuming the effects of shear deformation and moderately high value of the radius-to-side ratio (R/a), based on the first-order shear deformation theory (FSDT) and von Karman type of geometric nonlinearity, the governing system of equations is obtained. The analytical solution of field equations is carried out using the Ritz method together with the Newton-Raphson iterative scheme. The effects of radius-to-side ratio, temperature change, and boundary conditions on the nonlinear response of the functionally graded carbon nanotubes reinforced composite deep cylindrical panel (FG-CNTRC) are investigated. It is concluded that, among the five possible distribution patterns of CNT, FG-V CNTRC deep cylindrical panel is strongest with the highest bending moment and followed by UD, X, O, and Ʌ-ones. Also, considering the present deep cylindrical panel formulation increases the accuracy of the results. Hence, according to the noticeable amount of R/a in FG-CNTRC cylindrical panels, it is mandatory to apply strain-displacement relations of deep cylindrical panels for bending analysis of FG-CNTRC which certainly is desirable for industrial application.

Super-growth of Carbon Nanotubes by O2-assisted Microwave Plasma Chemical Vapor Deposition

  • Park, Sang-Eun;Kim, Yu-Seok;Kim, Seong-Hwan;Lee, Su-Il;Jo, Ju-Mi;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.387-387
    • /
    • 2011
  • 탄소 나노튜브(Carbon nanotubes, CNTs)는 육각형 모양의 구조로서 오직 탄소만으로 이루어진 소재이다. CNT는 열전도율이 다이아몬드보다 약 2배 우수하고, 전기 전도는 구리에 비해 1,000배 높으며, 강도는 강철보다 100배나 뛰어나다. CNT의 이러한 특성을 이용한 트랜지스터, 태양전지, 가스 검출을 위한 고감도 센서, 나노 섬유, 고분자-탄소나노튜브 고기능 복합체 등 많은 분야에서 연구가 활발히 진행되고 있다. 또한 수직으로 성장된 탄소 나노튜브는 일반적인 재료에서는 보기 드물게 힘들게 직경이 나노 크기인 반면 길이는 수 mm까지 합성 되기 때문에 앞서 언급한 분야로의 활용이 더욱 유리하며, 그 중에서도 나노 섬유, 나노 복합체로서의 활용에 극히 유용하다. 이러한 이유로 수직 배열된 CNT 합성에 많은 연구가 집중 되고 있다. 여러 합성 방법 중 성장 변수를 비교적 용이하게 조절 가능한 열 화학 기상 증착법(Thermal chemical vapor deposition, TCVD)을 이용하여 수직 배열된 수 mm의 CNT를 합성한 연구 결과들이 보고된 바 있다. 그러나 앞선 연구결과들은 CNT의 성장속도가 느릴 뿐만 아니라 합성 시간이 길어질수록 성장 속도가 감소하는 경향을 보였다. 반면, 마이크로웨이브 플라즈마 화학 기상 증착법(Microwave plasma CVD, MPCVD)은 기존의 다른 TCVD에 비해 낮은 온도에서 CNT를 합성할 수 있는 장점을 가지며, 고출력(~600 W 이상)의 플라즈마를 사용하기 때문에 성장률이 높고 고밀도의 CNT 합성이 가능하다. 본 연구에서는 철을 촉매금속으로 사용하고 MPCVD을 이용하여 얇은 다중벽 CNT를 합성하였다. 철은 직류 마그네트론 스퍼터(D.C magnetron sputter)를 사용하여 증착하였다. 합성시 가스는 탄소 공급원인 메탄($CH_4$)과 함께 플라즈마 공급원인 수소($H_2$)를 사용하였다. 또한 산소($O_2$)의 주입 여부에 따른 CNT의 성장 속도와 성장 길이를 비교하였다. 산소를 주입하였을 때, CNT의 성장 속도와 길이 모두 크게 향상됨을 확인 할 수 있었다. 이는 촉매금속 표면의 비정질 탄소의 흡착으로 인해 활성화된 촉매금속의 반응시간을 증가시키기 때문이다. 성장된 CNT는 주사전자 현미경(Scanning Electron Microscopy, SEM)과 라만 분광법(Raman spectroscopy)을 통해 표면형상과 결정성을 분석하였다.

  • PDF

Mechanical, thermal and electrical properties of polymer nanocomposites reinforced with multi-walled carbon nanotubes (다층카본나노튜브가 보강된 고분자 나노복합체의 기계적, 열적, 전기적 특성)

  • Kook, J.H.;Huh, M.Y.;Yang, H.;Shin, D.H.;Park, D.H.;Nah, C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.215-216
    • /
    • 2007
  • Semiconducting layers are thin rubber film between electrical cable wire and insulating polymer layers having a volume resistivity of ${\sim}10^2{\Omega}cm$. A new semiconducting material was suggested in this study based on the carbon nanotube(CNT)-reinforced polymer nanocomposites. CNT-reinforced polymer nanocomposites were prepared by solution mixing with various polymer type and dual filler system. The mechanical, thermal and electrical properties were investigated as a function of polymer type and dual filler system based on CNT and carbon black. The volume resistivity of composites was strongly related with the crystallinity of polymer matrix. With decreased crystallinity, the volume resistivity decreased linearly until a critical point, and it remained constant with further decreasing the crystallinity. Dual filler system also affected the volume resistivity. The CNT-reinforced nanocomposite showed the lowest volume resistivity. When a small amount of carbon black(CB) was replaced the CNT, the crystallinity increased considerably leading to a higher volume resistivity.

  • PDF

Dispersion of carbon nanotube in polymer composite and their field emission superiority

  • Park, J.H.;Jeon, S.Y.;Alegonkar, P.S.;Yoo, J.B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.778-781
    • /
    • 2007
  • The dispersion of carbon nanotubes in composite and their field emission superiority have been discussed. Four synthesis methods have been studied. The CNT-composite, synthesized by the combination of the chemical and mechanical dispersion routes shows superior dispersion as well as field emission characteristics as compared to other syntheses methods.

  • PDF

DNA and DNA-CTMA composite thin films embedded with carboxyl group-modified multi-walled carbon nanotubes

  • Dugasani, Sreekantha Reddy;Gnapareddy, Bramaramba;Kesama, Mallikarjuna Reddy;Ha, Tai Hwan;Park, Sung Ha
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.79-86
    • /
    • 2018
  • Although the intrinsic characteristics of DNA molecules and carbon nanotubes (CNT) are well known, fabrication methods and physical characteristics of CNT-embedded DNA thin films are rarely investigated. We report the construction and characterization of carboxyl (-COOH) group-modified multi-walled carbon nanotube (MWCNT-COOH)-embedded DNA and cetyltrimethyl-ammonium chloride-modified DNA (DNA-CTMA) composite thin films. Here, we examine the structural, compositional, chemical, spectroscopic, and electrical characteristics of DNA and DNA-CTMA thin films consisting of various concentrations of MWCNT-COOH. The MWCNT-COOH-embedded DNA and DNA-CTMA composite thin films may offer a platform for developing novel optoelectronics, energy harvesting, and sensing applications in physical, chemical, and biological sciences.

[ $NO_2$ ] Gas Sensing Characteristics of Carbon Nanotubes (탄소 나노튜브를 이용한 이산화질소 감지 센서의 특성)

  • Lee R. Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.227-233
    • /
    • 2005
  • Carbon nanotubes (CNT) which were grown, on the alumina substrate with a pair of comb-type Au electrodes, by plasma enhanced chemical vapor deposition have been investigated for $NO_2$ gas sensor. The electrical resistance of CNT film decreased with temperature, indicating a semiconductor type of CNT, and also the resistance of CNT sensor decreased with increasing $NO_2$ concentration. Upon exposure to $NO_2$ gas, the electrical resistance of CNT film sensor rapidly decreased within 3 minutes, and then showed a constant value after $20\~30$ minutes. It is found that the sensitivity of CNT sensor has been improved by air oxidation. The CNT sensor oxidized at $450^{\circ}C$ for 30 minutes showed higher sensitivity value than that without oxidation by $27\%$, even for a low 250 ppb $NO_2$ concentration at operating temperature of $200^{\circ}C$. But it needs a recovery time more than 20 minutes for reuse after detection of $NO_2$ gas.

  • PDF

Evaluation on mechanical enhancement and fire resistance of carbon nanotube (CNT) reinforced concrete

  • Yu, Zechuan;Lau, Denvid
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.335-349
    • /
    • 2017
  • To cope with the demand on giant and durable buildings, reinforcement of concrete is a practical problem being extensively investigated in the civil engineering field. Among various reinforcing techniques, fiber-reinforced concrete (FRC) has been proven to be an effective approach. In practice, such fibers include steel fibers, polyvinyl alcohol (PVA) fibers, polyacrylonitrile (PAN) carbon fibers and asbestos fibers, with the length scale ranging from centimeters to micrometers. When advancing such technique down to the nanoscale, it is noticed that carbon nanotubes (CNTs) are stronger than other fibers and can provide a better reinforcement to concrete. In the last decade, CNT-reinforced concrete attracts a lot of attentions in research. Despite high cost of CNTs at present, the growing availability of carbon materials might push the usage of CNTs into practice in the near future, making the reinforcement technique of great potential. A review of existing research works may constitute a conclusive reference and facilitate further developments. In reference to the recent experimental works, this paper reports some key evaluations on CNT-reinforced cementitious materials, covering FRC mechanism, CNT dispersion, CNT-cement structures, mechanical properties and fire safety. Emphasis is placed on the interplay between CNTs and calcium silicate hydrate (C-S-H) at the nanoscale. The relationship between the CNTs-cement structures and the mechanical enhancement, especially at a high-temperature condition, is discussed based on molecular dynamics simulations. After concluding remarks, challenges to improve the CNTs reinforcement technique are proposed.

Effects of Surface Treatment on Field Emission Properties for Carbon Nanotube Cathodes (탄소나노튜브 캐소드에서 표면처리 방법이 전계방출 특성에 미치는 영향)

  • Seong, Myeong-Seok;Oh, Jeong-Seob;Lee, Ji-Eon;Jung, Seung-Jin;Kim, Tae-Sik;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 2006
  • Carbon nanotube cathodes (CNT cathodes) were fabricated by a screen printing method using multi-walled carbon nanotubes. The effects of surface treatment on CNT cathodes were investigated for use in high efficiency field emission displays. The optimum surface treatment for a CNT cathode is dependent on a relative bonding force of CNT films on the cathode after a heat treatment. Because of the high bonding force used in the Liquid method, this method is recommended for CNT cathodes which are heat-treated at $390^{\circ}C$ in a $N_2$ atmosphere. The Rolling method is applicable for CNT cathodes fabricated at $350^{\circ}C$ in an atmosphere of air. The results of this study provide basic criteria for the selection of an appropriate surface treatment for large area CNT cathodes.