• Title/Summary/Keyword: carbon nanotubes$H_2$

Search Result 198, Processing Time 0.042 seconds

Effects of Input Gases on the Growth Characteristics of Vertically Aligned Carbon Nanotubes in Plasma Enhanced Hot Filament Chemical Vapor Deposition

  • Han, Jae-Hee;Yang, Ji-Hun;Yang, Won-Suk;Yang, Cheol-Woong;Yoo, Ji-Beom;Park, Chong-Yun
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.2
    • /
    • pp.55-60
    • /
    • 2000
  • Vertically aligned carbon nanotubes on nickel coated glass substrates were obtained at low temperatures below 600$\^{C}$ by plasma enhanced hot filament chemical vapor deposition where acetylene gas was used as the carbon source and ammonia gas was used as the dilution gas and catalyst. The diameters of the nanotubes decreased from 96 m to 41 m as NH$_3$/C$_2$H$_2$ ratio increased from 2:1 to 5:1. Total flow rate of input gases with constant NH$_3$/C$_2$H$_2$ ratio did not change the diameter of carbon nanotubes. No growth of the carbon nanotubes was observed with only C$_2$H$_2$ nor N$_2$ instead of NH$_2$. G line and D line in Raman spectra were observed, which implies that there were many structural defects in carbon nanotubes.

  • PDF

Effect of H2 on Formation Behavior of Carbon Nanotubes

  • Chung, Uoo-Chang
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1521-1524
    • /
    • 2004
  • The effect of $H_2$ gas on the carbon nanotubes (CNTs) synthesis with CO-$H_2$ gas mixture was investigated using mass measurements and scanning electron microscopy (SEM). The maximum weight and yield of the synthesized carbon were obtained when the mixture ratio of $H_2$: CO was 3 : 7 and 9 : 1, respectively. In case of 100% carbon monoxide (CO) without hydrogen ($H_2$) addition, the weight of carbon increased, but CNTs were not observed. The CNTs began to be made when the contents of $H_2$ reaches at least 10%, their structures became more distinct with an increase of $H_2$ addition, and then the shapes of CNTs were more thin and straight. When the contents of $H_2$ was 80% ($H_2$ : CO = 8 : 2), the shapes and growth of CNTs showed an optimal condition. On the other hand, when the contents of $H_2$ was higher than the critical value, the shapes of CNTs became worse due to transition into inactive surface of catalyst. It was considered that the inactive surface of catalyst resulted from decrease of carbon (C) and $H_2$ concentration by facilitation of methane ($CH_4$) gasification reaction (C + 2$H_2$ ${\rightarrow}$ $CH_4$) between C and $H_2$ gases. It was also found that H2 addition had an influence considerably on the shape and structure of CNTs.

Influence of Surface Functional Group of Carbon Nanotubes for Applications in Electrochemical Capacitors

  • Park, Sul Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.480.2-480.2
    • /
    • 2014
  • Electrochemical capacitors have been the most strong energy storage devices due to high power density and long cycle stability. Pristine carbon nanotubes are promising electrode materials for excellent electrical conductivity and high specific surface area in electrochemical capacitor. However, the practical application of pristine carbon nanotubes was limited by the aggregation into bundles due to van der Waals force. In this research, we explained how multi-walled carbon nanotubes (MWCNT) functionalized by carboxyl, sulfonic, and amine groups (CNT-COOH, CNT-SO3H, CNT-NH2) to improve the performances of MWCNT. Functionalized CNTs showed two- to four-fold increase in capacitance over that of pristine CNTs, while maintaining reasonable cyclic stability. But, the CNT-COOH showed the lowest rate capability of 57% compared to 84%, 86% of CNT-SO3H and CNT-NH2. As demonstrated by the spectroscopic analysis, This reseach showed how surface functional group of carbon nanotubes change capacitor performances.

  • PDF

Hydrogen adsorption properties of multi-walled carbon nanotubes (Multi-wall 탄소나노튜브의 수소 저장 특성)

  • Hwang, J.Y.;Lee, S.H.;Sim, K.S.;Kim, J.W.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.1
    • /
    • pp.65-73
    • /
    • 2001
  • Carbon nanotubes were prepared by catalytic decomposition of $CH_4$ using Ni-MgO catalyst at various temperatures. $H_2$ effect on crystallinity and morphology during the synthesis of carbon nanotubes was investigated. The crystallinity and morphology were characterized by SEM, TEM, XRD, TGA, and Raman spectroscopy. In addition, the hydrogen adsorption properties were evaluated by PCT measurement in a hydrogen pressure range between 1 and 120 bar. The optimal synthesis temperature of carbon nanotubes was elevated in the presence of $H_2$, although significant difference of carbon nanotube morphology was not found. It is believed that hydrogen served as self-cleaner mops the amorphous carbon on the catalyst surface. It is proved that the carbon nanotubes have multi-walled structure, short length with a outer diameter of 20 ~40nm and open tips after elimination of the catalyst. The amount of hydrogen adsorbed in carbon nanotubes is increased as the pressure of hydrogen is increased and reaches 1.3 wt % under the hydrogen pressure of 120 bar at room temperature.

  • PDF

Growth of Vertically Aligned Carbon Nanotubes on Co-Ni Alloy Metal (Co-Ni 합금위에서 수직방향으로 정렬된 탄소나노튜브의 성장)

  • Ryu, Jae-Eun;Lee, Cheol-Jin;Lee, Tae-Jae;Son, Gyeong-Hui;Sin, Dong-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.451-454
    • /
    • 2000
  • We have grown vertically aligned carbon nanotubes in a large area of Co-Ni codeposited Si substrates by the thermal CVD usign $C_2H_2$ gas. Since the discovery of carbon nanotubes, growth of carbon nanotubes has been achieved by several methods such as laser vaporization, arc discharge, and pyrolysis. In particular, growth of vertically aligned nanotubes is important to flat panel display applications. Recently, vertically aligned carbon nanotubes have been grown on glass by PECVD. Aligned carbon nanotubes can be also grown on mesoporous silica and Fe patterned porous silicon using CVD. In this paper, we demonstrate that carbon nanotubes can be vertically aligned on catalyzed Si substrate when the domain density of catalytic particles reaches a certain value. We suggest that steric hindrance between nanotubes at an initial stage of the growth forces nanotubes to align vertically and each nonotubes are grown in bundle.

  • PDF

Growth of vertically aligned carbon nanotubes on silicon substrates by the thermal CVD (열화학기상증착법에 의해 실리콘 기판위에 수직방향으로 정렬된 탄소나노튜브의 성장)

  • 이철진;김대운;이태재;박정훈;손권희;류승철;최영철;박영수;최원석
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.275-278
    • /
    • 1999
  • We have grown vertically aligned carbon nanotubes in a large area of Co-Ni codeposited Si substrates by the thermal CVD using $C_2$H$_2$gas. Since the discovery of carbon nanotubes, Synthesis of carbon nanotubes for mass production has been achieved by several methods such as laser vaporization, arc discharge, and pyrolysis. In particular, growth of vertically aligned nanotubes is of technological importance for applications to FED. Recently, vertically aligned carbon nanotubes have been grown on glass by PECVD. Aligned carbon nanotubes can be also grown on mesoporous silica and Fe patterned porous silicon using CVD. Despite such breakthroughs in the growth, the growth mechanism of the alignment are still far from being clearly understood. Furthermore, FED has not been clearly demonstrated yet at a practical level. Here, we demonstrate that carbon nanotubes can be vertically aligned on catalyzed Si substrate when the domain density reaches a certain value. We suggest that steric hindrance between nanotubes at an initial stage of the growth forces nanotubes to align vertically and then nanotubes are further grown by the cap growth mechanism.

  • PDF

Study of Carbon Nanotubes by Electrostatic Force Microscopy (EFM(electrostatic force microscopy)를 이용한 탄소나노튜브의 연구)

  • Park Hoon;Seo Yu-Suk;Hong Jin-Soo;Chae Hee-Baik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.12-16
    • /
    • 2005
  • We used electrostatic force microscopy to probe carbon nanotubes. There is a linear relationship between the phase shift (${\Delta}{\phi}^{-l/2}$) and the inverse tube length ($L^{-1}$) of carbon nanotubes. When the distance(h) between the tip and the carbon nanotubes increase, the phase shift on EFM image decrease by a factor of $1/h^2$

  • PDF

Carbon Nanotube Deposition using Helicon Plasma CVD at Low Temperature

  • Muroyama, Masakazu;Kazuto, Kimura;Yagi, Takao;Inoue, Kouji;Saito, Ichiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.201-202
    • /
    • 2003
  • We developed a novel growth method of aligned carbon nanotubes. Aligned carbon nanotubes are grown on a metal catalyst on a glass substrate using biased Helicon plasma chemical vapor deposition (HPECVD) of $CH_4/H_2$ gases from 400 C to 500 C. The Helicon plasma source is one of the high-density plasma sources and is promising for low temperature carbon deposition. A Ni film was used as a catalyst to reduce the activation energy of the nanotubes' growth. The carbon nanotubes were deposited on the nickel catalysis layer selectively.

  • PDF

Synthesis of self-aligned carbon nanotubes on a Ni particles using Chemical Vapour Deposition

  • Park, Gyu-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.64-64
    • /
    • 2000
  • Since its discovery in 1991, the carbon nanotube has attracted much attention all over the world; and several method have been developed to synthesize carbon nanotubes. According to theoretical calculations, carbon nanotubes have many unique properties, such as high mechanical strength, capillary properties, and remarkable electronical conductivity, all of which suggest a wide range of potential applications in the future. Here we report the synthesis in the catalytic decomposition of acetylene at ~65 $0^{\circ}C$ over Ni deposited on SiO2, For the catalyst preparation, Ni was deposited to the thickness of 100-300A using effusion cell. Different approaches using porous materials and HF or NH3 treated samples have been tried for synthesis of carbon nanotubes. It is decisive step for synthesis of carbon nanotubes to form a round Ni particles. We show that the formation of round Ni particles by heat treatment without any pre-treatment such as chemical etching and observe the similar size of Ni particles and carbon nanotubes. Carbon nanotubes were synthesized by chemial vapour deposition ushin C2H2 gas for source material on Ni coated Si substrate. Ni film gaving 20~90nm thickness was changed into Ni particles with 30~90nm diameter. Heat treatment of Ni fim is a crucial role for the growth of carbon nanotube, High-resolution transmission electron microscopy images show that they are multi-walled nanotube. Raman spectrum shows its peak at 1349cm-1(D band) is much weaker than that at 1573cm-1(G band). We believe that carbon nanotubes contains much less defects. Long carbon nanotubes with length more than several $\mu$m and the carbon particles with round shape were obtained by CVD at ~$650^{\circ}C$ on the Ni droplets. SEM micrograph nanotubes was identified by SEM. Finally, we performed TEM anaylsis on the caron nanotubes to determine whether or not these film structures are truly caron nanotubes, as opposed to carbon fiber-like structures.

  • PDF

The Effect of Catalysts merged with alumina on the Growing Characteristics of Carbon Nanotubes using AAO templates

  • Lee, In-Wha;Lee, Tae-Young;Yang, Ji-Hoon;Ha, Byoung-Ho;Yoo, Ji-Beom;Kim, Seong-Kyu;Park, Chong-Yun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.697-700
    • /
    • 2002
  • Porous anodic aluminum oxide(AAO) templates prepared by anodizing method were used for growing multiwalled carbon nanotubes(CNTs). AAO templates with the homogeneous pore diameter and length were obtained by two step anodizing technique. Using AAO templates, vertically well-ordered two-dimensional carbon nanotube arrays were fabricated. We investigated the field emission property of CNTs grown using different catalyst metals in vacuum chamber (<$10^{-7}$ Torr) on AAO Template. To explain the different emission property, the surface reaction between catalysts and alumina pores which inserted carbon species of $C_2H_2$ using High resolution transmission electron microscopy (HRTEM) was studied.

  • PDF