Browse > Article
http://dx.doi.org/10.5012/bkcs.2004.25.10.1521

Effect of H2 on Formation Behavior of Carbon Nanotubes  

Chung, Uoo-Chang (Trouble Analysis and Reliability Research Center, Pusan National University)
Publication Information
Abstract
The effect of $H_2$ gas on the carbon nanotubes (CNTs) synthesis with CO-$H_2$ gas mixture was investigated using mass measurements and scanning electron microscopy (SEM). The maximum weight and yield of the synthesized carbon were obtained when the mixture ratio of $H_2$: CO was 3 : 7 and 9 : 1, respectively. In case of 100% carbon monoxide (CO) without hydrogen ($H_2$) addition, the weight of carbon increased, but CNTs were not observed. The CNTs began to be made when the contents of $H_2$ reaches at least 10%, their structures became more distinct with an increase of $H_2$ addition, and then the shapes of CNTs were more thin and straight. When the contents of $H_2$ was 80% ($H_2$ : CO = 8 : 2), the shapes and growth of CNTs showed an optimal condition. On the other hand, when the contents of $H_2$ was higher than the critical value, the shapes of CNTs became worse due to transition into inactive surface of catalyst. It was considered that the inactive surface of catalyst resulted from decrease of carbon (C) and $H_2$ concentration by facilitation of methane ($CH_4$) gasification reaction (C + 2$H_2$ ${\rightarrow}$ $CH_4$) between C and $H_2$ gases. It was also found that H2 addition had an influence considerably on the shape and structure of CNTs.
Keywords
$H_2$; Carbon nanotubes; Synthesized carbon; Catalyst; Gasification reaction;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Nolan, P. E. PhD Thesis, Hydrogen Control of Catalytic CarbonDeposition; University of Arizona, USA, 1995.
2 Hwang, H. S.; Chung, U. C. Met. & Mater. Int. 2004, 10, 77.   DOI   ScienceOn
3 Saito, Y.; Hamaguchi, K.; Hata, K.; Uchida, K. 1997, 389,554.
4 Dai, H. J.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R.E. Nature 1996, 384, 147.   DOI   ScienceOn
5 Park, C.; Baker, R. T. K. J. Catalysis 1998, 179, 361.   DOI   ScienceOn
6 Pinheiro, P.; Schouler, M. C.; Gadelle, P.; Mermoux, M.;Dooryhee, E. Carbon 2000, 38, 1469.   DOI   ScienceOn
7 Yongdan, L. Applied Catalysis A 1997, 163, 45.   DOI   ScienceOn
8 Rodriguez, N. M. J. Mater. Res. 1993, 8, 3233.   DOI
9 Toan, Le. Q.; Schouler, M. C.; Garden, J.; Gadelle, P. Carbon1999, 37, 505.   DOI   ScienceOn
10 Krishnankutty, N., et al. J. Catalysis 1996, 158, 217.   DOI   ScienceOn
11 Ijima, S. Nature 1991, 354, 56.   DOI
12 Chen, P.; Wu, X.; Lin, J.; Tan, K. L. Science 1999, 285, 91.   DOI   ScienceOn
13 Yan, H.; Li, Q.; Zhang, J.; Liu, Z. Chem. Phys. Lett. 2003, 380, 347.   DOI   ScienceOn
14 Trans, S. J.; Verschueren, A. R. M.; Dekker, C. Nature 1998, 393,49.   DOI
15 Wilddoeer, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.;Dekker, C. Nature 1998, 391, 59.   DOI   ScienceOn
16 Lijie, C.; Jinquan, W., et al. Carbon 2001, 39, 329.   DOI   ScienceOn
17 Baker, R. K.; Harris, P. S. Chemistry and Physics of Carbon; NewYork, 1978; pp 83-87.
18 Chen, P.; Zhang, H. B.; Lin, G. D.; Hong, Q.; Tsai, K. R. Carbon1997, 35, 1495.   DOI   ScienceOn
19 Audier, M.; Coulon, M. Carbon 1985, 23, 317.   DOI   ScienceOn
20 Hernadi, K.; Fonseca, A.; Nagy, J. B.; Bernaerts, D.; Lucas, A. A.Carbon 1996, 34, 1249.   DOI   ScienceOn
21 Charanjeet, S.; Milo, S. P.; Alan, H. W. Carbon 2003, 41, 359.   DOI   ScienceOn
22 White, C. T.; Todorov, T. N. Nature 1998, 391, 59.   DOI   ScienceOn
23 Qian, D.; Dickey, E. C.; Andrews, R.; Rantell, T. Appl. Phys. Lett.2000, 76, 2868.   DOI   ScienceOn