• 제목/요약/키워드: carbon nanotube reinforced composite beam

검색결과 45건 처리시간 0.016초

Superharmonic and subharmonic resonances of a carbon nanotube-reinforced composite beam

  • Alimoradzadeh, M.;Akbas, S.D.
    • Advances in nano research
    • /
    • 제12권4호
    • /
    • pp.353-363
    • /
    • 2022
  • This paper presents an investigation about superharmonic and subharmonic resonances of a carbon nanotube reinforced composite beam subjected to lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three different types of single walled carbon nanotubes (CNTs) distribution are considered through the thickness in polymeric matrix. The governing nonlinear dynamic equation is derived based on the von Kármán nonlinearity with using of Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. Effects of different patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the frequency-response curves of the carbon nanotube reinforced composite beam are investigated. The results show that volume fraction and the distribution of CNTs play an important role on superharmonic and subharmonic resonances of the carbon nanotube reinforced composite beams.

Thermal nonlinear dynamic and stability of carbon nanotube-reinforced composite beams

  • M. Alimoradzadeh;S.D. Akbas
    • Steel and Composite Structures
    • /
    • 제46권5호
    • /
    • pp.637-647
    • /
    • 2023
  • Nonlinear free vibration and stability responses of a carbon nanotube reinforced composite beam under temperature rising are investigated in this paper. The material of the beam is considered as a polymeric matrix by reinforced the single-walled carbon nanotubes according to different distributions with temperature-dependent physical properties. With using the Hamilton's principle, the governing nonlinear partial differential equation is derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The critical buckling temperatures, the nonlinear natural frequencies and the nonlinear free response of the system is obtained. The effect of different patterns of reinforcement on the critical buckling temperature, nonlinear natural frequency, nonlinear free response and phase plane trajectory of the carbon nanotube reinforced composite beam investigated with temperature-dependent physical property.

Nonlinear vibration analysis of carbon nanotube-reinforced composite beams resting on nonlinear viscoelastic foundation

  • M. Alimoradzadeh;S.D. Akbas
    • Geomechanics and Engineering
    • /
    • 제32권2호
    • /
    • pp.125-135
    • /
    • 2023
  • Nonlinear vibration analysis of composite beam reinforced by carbon nanotubes resting on the nonlinear viscoelastic foundation is investigated in this study. The material properties of the composite beam is considered as a polymeric matrix by reinforced carbon nanotubes according to different distributions. With using Hamilton's principle, the governing nonlinear partial differential equations are derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The nonlinear natural frequency and the nonlinear free response of the system is obtained. In addition, the effects of different patterns of reinforcement, linear and nonlinear damping coefficients of the viscoelastic foundation on the nonlinear vibration responses and phase trajectory of the carbon nanotube reinforced composite beam are investigated.

Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams

  • Lal, Achchhe;Markad, Kanif
    • Computers and Concrete
    • /
    • 제22권6호
    • /
    • pp.501-514
    • /
    • 2018
  • The paper presents the thermo-mechanically induced non-linear response of multiwall carbon nanotube reinforced laminated composite beam (MWCNTRCB) supported by elastic foundation using higher order shear deformation theory and von-Karman non-linear kinematics. The elastic properties of MWCNT reinforced composites are evaluated using Halpin-Tsai model by considering MWCNT reinforced polymer matrix as new matrix by dispersing in it and then reinforced with E-glass fiber in an orthotropic manner. The laminated beam is supported by Pasternak elastic foundation with Winkler cubic nonlinearity. A generalized static analysis is formulated using finite element method (FEM) through principle of minimum potential energy approach.

Vibration response of rotating carbon nanotube reinforced composites in thermal environment

  • Ozge Ozdemir;Ismail Esen;Huseyin Ural
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.1-17
    • /
    • 2023
  • This paper deals with the free vibration behavior of rotating composite beams reinforced with carbon nanotubes (CNTs) under uniform thermal loads. The temperature-dependent beam material is assumed to be a mixture of single-walled carbon nanotubes (SWCNTs) in an isotropic matrix and five different functionally graded (FG) distributions of CNTs are considered according to the variation along the thickness, namely the UD-uniform, FG-O, FG-V, FG-Λ and FG-X distributions where FG-V and FG-Λ are unsymmetrical patterns. Considering the Timoshenko beam theory (TBT), a new finite element formulation of functionally graded carbon nanotube reinforced composite (FGCNTRC) beam is created for the first time. And the effects of several essential parameters including rotational speed, hub radius, effective material properties, slenderness ratio, boundary conditions, thermal force and moments due to temperature variation are considered in the formulation. By implementing different boundary conditions, some new results of both symmetric and non-symmetrical distribution patterns are presented in tables and figures to be used as benchmark for further validation. In addition, as an alternative advanced composite application for rotating systems exposed to thermal load, the positive effects of CNT addition in improving the dynamic performance of the system have been observed and the results are presented in several tables and figures.

Nonlinear oscillations of a composite microbeam reinforced with carbon nanotube based on the modified couple stress theory

  • M., Alimoradzadeh;S.D., Akbas
    • Coupled systems mechanics
    • /
    • 제11권6호
    • /
    • pp.485-504
    • /
    • 2022
  • This paper presents nonlinear oscillations of a carbon nanotube reinforced composite beam subjected to lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three different types of single walled carbon nanotubes distribution are considered through the thickness in polymeric matrix. The non-linear strain-displacement relationship is considered in the von Kármán nonlinearity. The governing nonlinear dynamic equation is derived with using of Hamilton's principle.The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The frequency response equation and the forced vibration response of the system are obtained. Effects of patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the nonlinear responses of the carbon nanotube reinforced composite beam are investigated.

On the vibration of aligned carbon nanotube reinforced composite beams

  • Aydogdu, Metin
    • Advances in nano research
    • /
    • 제2권4호
    • /
    • pp.199-210
    • /
    • 2014
  • Carbon nanotubes have exceptional mechanical, thermal and electrical properties, and are considered for high performance structural and multifunctional composites. In the present study, the natural frequencies of aligned single walled carbon nanotube (CNT) reinforced composite beams are obtained using shear deformable composite beam theories. The Ritz method with algebraic polynomial displacement functions is used to solve the free vibration problem of composite beams. The Mori-Tanaka method is applied to find the composite beam mechanical properties. The continuity conditions are satisfied among the layers by modifying the displacement field. Results are found for different CNT diameters, length to thickness ratio of the composite beam and different boundary conditions. It is found that the use of smaller CNT diameter in the reinforcement element gives higher fundamental frequency for the composite beam.

Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams

  • Ebrahimi, Farzad;Farazmandnia, Navid
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.149-159
    • /
    • 2018
  • Thermo-mechanical buckling of sandwich beams with a stiff core and face sheets made of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) within the framework of Timoshenko beam theory is presented. The material properties of FG-CNTRC are supposed to vary continuously in the thickness direction and are estimated through the rule of mixture. Also the properties of these materials should be considered temperature dependent. The governing equations and boundary conditions are derived by using Hamilton's principle and solved using an efficient technique called the Differential Transform Method (DTM) to achieve the critical buckling of the sandwich beam in uniform thermal environment. A detailed parametric study is guided to investigate the effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, and clamped-clamped, simply-simply and clamped-simply end supports on the critical buckling behavior of sandwich beams with FG-CNTRC face sheets. Numerical results for comparison of sandwich beams with uniformly distributed carbon nanotube-reinforced composite (UD-CNTRC) face sheets with those with FG-CNTRC face sheets are also presented.

Static stability and vibration response of rotating carbon-nanotube-reinforced composite beams in thermal environment

  • Ozge Ozdemir;Huseyin Ural;Alexandre de Macedo Wahrhaftig
    • Advances in nano research
    • /
    • 제16권5호
    • /
    • pp.445-458
    • /
    • 2024
  • The objective of this paper is to present free vibration and static stability analyses of rotating composite beams reinforced with carbon nanotubes (CNTs) under uniform thermal loads. Beam structural equations and CNT-reinforced composite (CNTRC) beam formulations are derived based on Timoshenko beam theory (TBT). The temperature-dependent properties of the beam material, such as the elastic modulus, shear modulus, and material density, are assumed to vary over the thickness according to the rule of mixture. The beam material is modeled as a mixture of single-walled carbon nanotubes (SWCNTs) in an isotropic matrix. The SWCNTs are aligned and distributed in the isotropic matrix with different patterns of reinforcement, namely the UD (uniform), FG-O, FG-V, FG- Λ and FG-X distributions, where FG-V and FG- Λ are asymmetric patterns. Numerical examples are presented to illustrate the effects of several essential parameters, including the rotational speed, hub radius, effective material properties, slenderness ratio, boundary conditions, thermal force, and moments due to temperature variation. To the best of the authors' knowledge, this study represents the first attempt at the finite element modeling of rotating CNTRC Timoshenko beams under a thermal environment. The results are presented in tables and figures for both symmetric and asymmetric distribution patterns, and can be used as benchmarks for further validation.

Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments

  • Zhao, Jing-Lei;Chen, Xu;She, Gui-Lin;Jing, Yan;Bai, Ru-Qing;Yi, Jin;Pu, Hua-Yan;Luo, Jun
    • Steel and Composite Structures
    • /
    • 제43권6호
    • /
    • pp.797-808
    • /
    • 2022
  • This paper presents an investigation on the free vibration characteristics of functionally graded nanocomposite double-beams reinforced by single-walled carbon nanotubes (SWCNTs). The double-beams coupled by an interlayer spring, resting on the elastic foundation with a linear layer and shear layer, and is simply supported in thermal environments. The SWCNTs gradient distributed in the thickness direction of the beam forms different reinforcement patterns. The materials properties of the functionally graded carbon nanotube-reinforced composites (FG-CNTRC) are estimated by rule of mixture. The first order shear deformation theory and Euler-Lagrange variational principle are employed to derive the motion equations incorporating the thermal effects. The vibration characteristics under several patterns of reinforcement are presented and discussed. We conducted a series of studies aimed at revealing the effects of the spring stiffness, environment temperature, thickness ratios and carbon nanotube volume fraction on the nature frequency.