Browse > Article
http://dx.doi.org/10.12989/anr.2022.12.4.353

Superharmonic and subharmonic resonances of a carbon nanotube-reinforced composite beam  

Alimoradzadeh, M. (Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University)
Akbas, S.D. (Department of Civil Engineering, Bursa Technical University)
Publication Information
Advances in nano research / v.12, no.4, 2022 , pp. 353-363 More about this Journal
Abstract
This paper presents an investigation about superharmonic and subharmonic resonances of a carbon nanotube reinforced composite beam subjected to lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three different types of single walled carbon nanotubes (CNTs) distribution are considered through the thickness in polymeric matrix. The governing nonlinear dynamic equation is derived based on the von Kármán nonlinearity with using of Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. Effects of different patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the frequency-response curves of the carbon nanotube reinforced composite beam are investigated. The results show that volume fraction and the distribution of CNTs play an important role on superharmonic and subharmonic resonances of the carbon nanotube reinforced composite beams.
Keywords
carbon nanotubes; composites; couple stress theory; nonlinear vibration; superharmonic and subharmonic resonances;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Ghayesh, M.H. (2018b), "Nonlinear dynamics of multilayered microplates", J. Comput. Nonlinear Dyn., 13(2), 021006. https://doi.org/10.1115/1.4037596.   DOI
2 Guo, X.Y. and Zhang, W. (2016), "Nonlinear vibrations of a reinforced composite plate with carbon nanotubes", Compos. Struct., 135, 96-108. https://doi.org/10.1016/j.compstruct.2015.08.063.   DOI
3 Heidari, M. and Arvin, H. (2019), "Nonlinear free vibration analysis of functionally graded rotating composite Timoshenko beams reinforced by carbon nanotubes", J. Vib. Control, 25(14), 2063-2078. http://doi.org/10.1016/j.compstruct.2016.12.009.   DOI
4 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(56-58), 56-58. http://doi.org/10.1038/354056a0.   DOI
5 Fernandes, R., Mousavi, S. M. and El-Borgi, S. (2016), "Free and forced vibration nonlinear analysis of a microbeam using finite strain and velocity gradients theory", Acta Mech., 227(9), 2657-2670. https://doi.org/10.1007/s00707-016-1646-x.   DOI
6 Ghayesh, M.H. (2009), "Stability characteristics of an axially accelerating string supported by an elastic foundation", Mech. Mach Theory, 44(10), 1964-1979. https://doi.org/10.1016/j.mechmachtheory.2009.05.004.   DOI
7 Ghayesh, M.H. (2012), "Nonlinear dynamic response of a simply-supported Kelvin-Voigt viscoelastic beam, additionally supported by a nonlinear spring", Nonlinear Anal. Appl., 13(3), 1319-1333. https://doi.org/10.1016/j.nonrwa.2011.10.009.   DOI
8 Mamidi, N. (2019), "Cytotoxicity evaluation of carbon nanotubes for biomedical and tissue engineering applications", Perspect. Carbon Nanotub, 12. https://doi.org/10.5772/intechopen.85899.   DOI
9 Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.   DOI
10 Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Arch. Civil Mech. Eng., 21(4), 1-15. https://doi.org/10.1007/s43452-021-00291-7.   DOI
11 Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1), 1-17. https://doi.org/10.12989/anr.2021.11.1.001.   DOI
12 Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92(3), 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024.   DOI
13 Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417.   DOI
14 Kong, S., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46(5), 427-437. https://doi.org/10.1016/j.ijengsci.2007.10.002.   DOI
15 Li, Y.H., Wei, J., Zhang, X., Xu, C., Wu, D., Lu, L. and Wei, B. (2002), "Mechanical and electrical properties of carbon nanotube ribbons", Chem. Phys. Lett., 365(1-2), 95-100. https://doi.org/10.1016/S0009-2614(02)01434-3.   DOI
16 Mamidi, N., Leija, H. M., Diabb, J.M., Lopez Romo, I., Hernandez, D., Castrejon, J.V., Romero, O.M., Barrera, E.V. and Zuniga, A.E. (2017), "C ytotoxicity evaluation of unfunctionalized multiwall carbon nanotubes-ultrahigh molecular weight polyethylene nanocomposites", J. Biomed. Mater. Res. A, 105(11), 3042-3049. https://doi.org/10.1002/jbm.a.36168.   DOI
17 Ruoff, R.S. and Lorents, D.C. (1995), "Mechanical and thermal properties of carbon nanotubes", Carbon, 33(7), 925-930. https://doi.org/10.1016/0008-6223(95)00021-5.   DOI
18 Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.   DOI
19 Ghayesh, M.H., Amabili, M. and Paidoussis, M.P. (2012a), "Thermo-mechanical phase-shift determination in Coriolis mass-flowmeters with added masses", J. Fluid Struct., 34, 1-13. https://doi.org/10.1016/j.jfluidstructs.2012.05.003.   DOI
20 Mamidi, N., Delgadillo, R.M.V. and Castrejon, J.V. (2021), "Unconventional and facile production of stimuli-responsive multifunctional system for simultaneous drug delivery and environmental remediation", Environ. Sci. Nano, 8(7), 2081-2097. https://doi.org/10.1039/D1EN00354B.   DOI
21 Tagrara, S.H., Benachour, A, Bouiadjra M.B., Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. http://doi.org/10.12989/scs.2015.19.5.1259.   DOI
22 Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2019), "Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures", Polym. Compos., 40(S1), 102-126. https://doi.org/10.1002/pc.24520.   DOI
23 Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163.   DOI
24 Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W. and Zuppiroli, L. (1999), "Mechanical properties of carbon nanotubes", Appl. Phys. A, 69(3), 255-260. https://doi.org/10.1007/s003390050999.   DOI
25 Nayfeh, A.H., Mook, D.T. and Holmes, P. (1980), "Nonlinear oscillations", ASME. J. Appl. Mech, 47(3), 692. https://doi.org/10.1115/1.3153771.   DOI
26 Zavala, J.M.D., Gutierrez, H.M.L., Segura-Cardenas, E., Mamidi, N., Morales-Avalos, R., Villela-Castrejon, J. and Elias-Zuniga, A. (2021), "Manufacture and mechanical properties of knee implants using SWCNTs/UHMWPE composites", J. Mech. Behav. Biomed. Mater., 120, 104554. https://doi.org/10.1016/j.jmbbm.2021.104554.   DOI
27 Ebrahimi, F. and Dabbagh, A. (2018b), "Wave dispersion characteristics of embedded graphene platelets-reinforced composite microplates", Eur. Phys. J. Plus, 133(4), 1-13. https://doi.org/10.1140/epjp/i2018-11956-5.   DOI
28 Ponnusami, S.A., Gupta, M. and Harursampath, D. (2019), "Asymptotic modeling of nonlinear bending and buckling behavior of carbon nanotubes", AIAA J., 57(10), 4132-4140. https://doi.org/10.2514/1.J057564.   DOI
29 Rafiee, M., He, X.Q. and Liew, K.M. (2014), "Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection", Int. J. Non-Linear Mech., 59, 37-51. https://doi.org/10.1016/j.ijnonlinmec.2013.10.011   DOI
30 Rao, S.S. (2007), Vibration of Continuous Systems, Wiley, New York, U.S.A.
31 Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., 24(1), 65-77. http://doi.org/10.12989/scs.2017.24.1.065.   DOI
32 Akbas, S.D. (2018b), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1.   DOI
33 Akbas, S.D. (2018c), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.   DOI
34 Ansari, M., Esmailzadeh, E. and Younesian, D. (2010), "Internal-external resonance of beams on non-linear viscoelastic foundation traversed by moving load", Nonlinear Dynam., 61(1), 163-182. https://doi.org/10.1007/s11071-009-9639-0.   DOI
35 Akbas, S.D. (2019a) "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 5(2), 477-485. https://doi.org/10.22059/JCAMECH.2019.281285.392.   DOI
36 Al-Furjan, M.S.H., Habibi, M., Won Jung, D., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2020), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01130-8.   DOI
37 Alimoradzadeh, M., Salehi, M. and Esfarjani, S.M. (2019), "Nonlinear dynamic response of an axially functionally graded (AFG) beam resting on nonlinear elastic foundation subjected to moving load", Nonlinear Eng., 8(1), 250-260. https://doi.org/10.1515/nleng-2018-0051.   DOI
38 Alimoradzadeh, M., Salehi, M. and Esfarjani, S.M. (2020), "Nonlinear vibration analysis of axially functionally graded microbeams based on nonlinear elastic foundation using modified couple stress theory", Period. Polytech. Mech. Eng., 64(2), 97-108. https://doi.org/10.3311/PPme.11684.   DOI
39 Alimoradzadeh, M. and Akbas, S.D. (2021) "Superharmonic and subharmonic resonances of atomic force microscope subjected to crack failure mode based on the modified couple stress theory", Eur. Phys. J. Plus, 136(5), 1-20. https://doi.org/10.1140/epjp/s13360-021-01539-0.   DOI
40 Shi, Z., Yao, X., Pang, F. and Wang, Q. (2017), "An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions", Sci. Rep., 7(1), 1-18. https://doi.org/10.1038/s41598-017-12596-w.   DOI
41 Simsek, M. (2014), "Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He's variational method", Compos. Struct., 112, 264-272. https://doi.org/10.1016/j.compstruct.2014.02.010.   DOI
42 Civalek, O ., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021a) "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Method Appl. Sci., Special Issue Paper. https://doi.org/10.1002/mma.7069.   DOI
43 Akbas, S.D. (2019b) "Longitudinal forced vibration analysis of porous a nanorod", Muhendislik Bilimleri ve Tasarim Dergisi, 7(4), 736-743. https://doi.org/10.21923/jesd.553328.   DOI
44 Thang, P.T., Nguyen, T.T. and Lee, J. (2017), "A new approach for nonlinear buckling analysis of imperfect functionally graded carbon nanotube-reinforced composite plates", Compos. Part B Eng., 127, 166-174. http://doi.org/10.1016/j.compositesb.2016.12.002.   DOI
45 Ton-That, H.L. (2020), "The linear and nonlinear bending analyses of functionally graded carbon nanotube-reinforced composite plates based on the novel four-node quadrilateral element", Eur. J. Comput. Mech., 139-172. https://doi.org/10.13052/ejcm2642-2085.2915.   DOI
46 Van Do, V.N., Jeon, J.T. and Lee, C.H. (2020), "Dynamic analysis of carbon nanotube reinforced composite plates by using Bezier extraction based isogeometric finite element combined with higher-order shear deformation theory", Mech. Mater., 142, 103307. http://doi.org/10.1016/j.mechmat.2019.103307.   DOI
47 Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. http://doi.org/10.1016/j.commatsci.2013.01.028.   DOI
48 Yakobson, B.I. and Avouris, P. (2001), "Mechanical properties of carbon nanotubes", Carbon Nanotub., 287-327. https://doi.org/10.1007/3-540-39947-X_12.   DOI
49 Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Pres. Ves. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.   DOI
50 Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.   DOI
51 Akbas S.D. (2017b), Static, Vibration, and Buckling Analysis of Nanobeams, Nanomechanics, InTech, Rijeka, Croatia.
52 Babu Arumugam, A., Rajamohan, V., Bandaru, N., Sudhagar P.E. and Kumbhar, S.G. (2019), "Vibration analysis of a carbon nanotube reinforced uniform and tapered composite beams", Arch. Acoust., 44(02), 309-320. http://doi.org/10.24425/aoa.2019.128494.   DOI
53 Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.   DOI
54 Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3),579-599. https://doi.org/10.12989/sem.2016.59.3.579.   DOI
55 Akbas, S.D. (2016c), "Static analysis of a nano plate by using generalized differential quadrature method", Int. J. Eng. Appl. Sci., 8(2), 30-39. https://doi.org/10.24107/ijeas.252143.   DOI
56 Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3),1750033. https://doi.org/10.1142/S021945541750033X.   DOI
57 Akbas, S.D. (2017c), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.   DOI
58 Ebrahimi F., Shaghaghi G.R., Boreiry M., (2016), "An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes", Struct. Eng. Mech., 57(1), 179-200. http://doi.org/10.12989/sem.2016.57.1.179.   DOI
59 Ghayesh, M.H., Kazemirad, S. and Reid, T. (2012b), "Nonlinear vibrations and stability of parametrically exited systems with cubic nonlinearities and internal boundary conditions: A general solution procedure", Appl. Math. Modell., 36(7), 3299-3311. https://doi.org/10.1016/j.apm.2011.09.084.   DOI
60 Ghayesh, M.H. (2018a), "Nonlinear vibrations of axially functionally graded Timoshenko tapered beams", J. Comput. Nonlinear Dyn., 13(4), 041002. https://doi.org/10.1115/1.4039191.   DOI
61 Ebrahimi, F. and Dabbagh, A. (2018a), "Wave propagation analysis of magnetostrictive sandwich composite nanoplates via nonlocal strain gradient theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(22), 4180-4192. https://doi.org/10.1177/0954406217748687.   DOI
62 Civalek, O ., Akbas, S.D., Akgoz, B. and Dastjerdi, S. (2021b), "Forced vibration analysis of composite beams reinforced by carbon nanotubes", Nanomaterials, 11(3), 571. https://doi.org/10.3390/nano11030571.   DOI
63 Chu, H., Li, Y., Wang, C., Zhang, H., Li, D. (2020), "Recent investigations on nonlinear absorption properties of carbon nanotubes", Nanophotonics, 9(4), 761-781. https://doi.org/10.1515/nanoph-2020-0085.   DOI
64 Ebrahimi, F. and Dabbagh, A. (2018c), "On wave dispersion characteristics of double-layered graphene sheets in thermal environments", J. Electromagnetic Wave Appl., 32(15), 1869-1888. https://doi.org/10.1080/09205071.2017.1417918.   DOI