Browse > Article
http://dx.doi.org/10.12989/scs.2022.43.6.797

Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments  

Zhao, Jing-Lei (College of Mechanical and vehicle Engineering, Chongqing University)
Chen, Xu (College of Mechanical and vehicle Engineering, Chongqing University)
She, Gui-Lin (College of Mechanical and vehicle Engineering, Chongqing University)
Jing, Yan (College of Mechanical and vehicle Engineering, Chongqing University)
Bai, Ru-Qing (College of Mechanical and vehicle Engineering, Chongqing University)
Yi, Jin (College of Mechanical and vehicle Engineering, Chongqing University)
Pu, Hua-Yan (College of Mechanical and vehicle Engineering, Chongqing University)
Luo, Jun (College of Mechanical and vehicle Engineering, Chongqing University)
Publication Information
Steel and Composite Structures / v.43, no.6, 2022 , pp. 797-808 More about this Journal
Abstract
This paper presents an investigation on the free vibration characteristics of functionally graded nanocomposite double-beams reinforced by single-walled carbon nanotubes (SWCNTs). The double-beams coupled by an interlayer spring, resting on the elastic foundation with a linear layer and shear layer, and is simply supported in thermal environments. The SWCNTs gradient distributed in the thickness direction of the beam forms different reinforcement patterns. The materials properties of the functionally graded carbon nanotube-reinforced composites (FG-CNTRC) are estimated by rule of mixture. The first order shear deformation theory and Euler-Lagrange variational principle are employed to derive the motion equations incorporating the thermal effects. The vibration characteristics under several patterns of reinforcement are presented and discussed. We conducted a series of studies aimed at revealing the effects of the spring stiffness, environment temperature, thickness ratios and carbon nanotube volume fraction on the nature frequency.
Keywords
double beam; first order shear deformation theory; functionally graded carbon nanotube-reinforced composite; thermal environment; vibration characteristics;
Citations & Related Records
Times Cited By KSCI : 18  (Citation Analysis)
연도 인용수 순위
1 Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel Compos. Struct., 42(3), 397-405. http://doi.org/10.12989/scs.2022.42.3.397.   DOI
2 Zhu, P., Lei, Z. X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94, 1450-1460. http://doi.org/10.1016/j.compstruct.2011.11.010.   DOI
3 Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct., 38, 293-304. http://doi.org/10.12989/scs.2021.38.3.293.   DOI
4 Shirvanimoghaddam, K., Polisetti, B., Dasari, A., Yang, J., Ramakrishna, S. and Naebe, M. (2018), "Thermomechanical performance of cheetah skin carbon nanotube embedded composite: Isothermal and non-isothermal investigation", Polymer, 145, 294-309. http://doi.org/10.1016/j.polymer.2018.04.079.   DOI
5 Tans, S.J., Devoret, M.H., Dai, H.J., Thess, A., Smalley, R.E., Geerligs, L.J. and Dekker, C. (1997), "Individual single-wall carbon nanotubes as quantum wires". Nature 386, 474-477. http://doi.org/10.1038/386474a0.   DOI
6 Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. http://doi.org/10.1016/j.commatsci.2013.01.028.   DOI
7 Yang, J., Huang, X.H. and Shen, H.S. (2020), "Nonlinear Vibration of Temperature-Dependent FG-CNTRC Laminated Beams with Negative Poisson's Ratio", Int. J. Struct. Stabil. Dyn., 20. http://doi.org/10.1142/s0219455420500431.   DOI
8 Zghal, S., Frikha, A. and Dammak, F. (2018), "Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures", Appl. Mathem. Modelling, 53, 132- 155. http://doi.org/10.1016/j.apm.2017.08.021.   DOI
9 Zhang, C.L. and Shen, H.S. (2006), "Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation", Appl. Phys. Lett., 89. http://doi.org/10.1063/1.2336622.   DOI
10 Vinyas, M. and Harursampath, D. (2020), "Nonlinear vibrations of magneto-electro-elastic doubly curved shells reinforced with carbon nanotubes", Compos. Struct., 253. http://doi.org/10.1016/j.compstruct.2020.112749.   DOI
11 Ebrahimi, F. and Farazmandnia, N. (2016), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory". Mech. Adv. Mater. Struct., 24, 820-829. http://doi.org/10.1080/15376494.2016.1196786.   DOI
12 Cheng, H., Li, C.F. and Jiang, Y. (2020), "Free vibration analysis of rotating pre-twisted ceramic matrix carbon nanotubes reinforced blades", Mech. Adv. Mater. Struct., 1-75. http://doi.org/10.1080/15376494.2020.1849881.   DOI
13 Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M.A. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36, 643-656. http://doi.org/10.12989/scs.2020.36.6.643.   DOI
14 Heidari, M. and Arvin, H. (2019), "Nonlinear free vibration analysis of functionally graded rotating composite Timoshenko beams reinforced by carbon nanotubes", J. Vib. Control, 25, 2063-2078. http://doi.org/10.1177/1077546319847836.   DOI
15 Duc, N.D., Cong, P.H., Tuan, N.D., Tran, P. and Thanh, N.V. (2017), "Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations", Thin-Wall. Struct., 115, 300-310. http://doi.org/10.1016/j.tws.2017.02.016.   DOI
16 Duc, N.D. and Minh, P.P. (2021), "Free vibration analysis of cracked FG CNTRC plates using phase field theory", Aeros. Sci. Technol., 112. http://doi.org/10.1016/j.ast.2021.106654.   DOI
17 Eltaher, M.A. and Abdelrahman, A.A. (2020), "Bending behavior of squared cutout nanobeams incorporating surface stress effects", Steel Compos. Struct., 36, 143-161. http://doi.org/10.12989/scs.2020.36.2.143.   DOI
18 Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28, 2394-2401. http://doi.org/10.1016/j.matdes.2006.09.022.   DOI
19 Kanagaraj, S., Varanda, F.R., Zhil'tsova, T.V., Oliveira, M.S.A. and Simoes, J.A.O. (2007), "Mechanical properties of high density polyethylene/carbon nanotube composites", Compos. Sci. Technol., 67, 3071-3077. http://doi.org/10.1016/j.compscitech.2007.04.024.   DOI
20 Janghorban, M. and Nami, M.R. (2016), "Wave propagation in functionally graded nanocomposites reinforced with carbon nanotubes based on second-order shear deformation theory", Mech. Adv. Mater. Struct., 24, 458-468. http://doi.org/10.1080/15376494.2016.1142028.   DOI
21 Lu, L., She, G.L. and Guo, X. (2021a), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199. http://doi.org/10.1016/j.ijmecsci.2021.106428   DOI
22 Nie, X., Zhao, L., Deng, S. and Chen, X. (2020), "How interlayer twist angles affect thermal conduction of double-walled nanotubes: A non-equilibrium molecular dynamics study", Int. J. Heat Mass Transfer, 160. http://doi.org/10.1016/j.ijheatmasstransfer.2020.120234.   DOI
23 Abo-bakr, H.M., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M. A. (2021), "Multi-objective shape optimization for axially functionally graded microbeams", Compos. Struct., 258. http://doi.org/10.1016/j.compstruct.2020.113370.   DOI
24 Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2020), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27, 1644-1655. http://doi.org/10.1177/1077546320947302.   DOI
25 Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35, 555-566. http://doi.org/10.12989/scs.2020.35.4.555.   DOI
26 Esen, I., Ozarpa, C. and Eltaher, M.A. (2021c), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261. http://doi.org/10.1016/j.compstruct.2021.113552.   DOI
27 Yang, J., Ke, L.L. and Feng, C. (2015), "Dynamic buckling of thermo-electro-mechanically loaded FG-CNTRC beams", Int. J. Struct. Stabil. Dyn., 15. http://doi.org/10.1142/s0219455415400179.   DOI
28 Yas, M.H. and Heshmati, M. (2012), "Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load", Appl. Mathem. Modelling, 36, 1371-1394. http://doi.org/10.1016/j.apm.2011.08.037.   DOI
29 Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021a), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., http://doi.org/10.1007/s00366-021-01389-5.   DOI
30 Esen, I., Daikh, A.A. and Eltaher, M.A. (2021b), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Europ. Phys. J. Plus, 136. http://doi.org/10.1140/epjp/s13360-021-01419-7.   DOI
31 Fu, T., Chen, Z., Yu, H., Hao, Q. and Zhao, Y. (2020), "Vibratory response and acoustic radiation behavior of laminated functionally graded composite plates in thermal environments", J. Sandw. Struct. Mater., 22, 1681-1706. http://doi.org/10.1177/1099636219856556.   DOI
32 Han, F., Dan, D. and Cheng, W. (2018), "An exact solution for dynamic analysis of a complex double-beam system", Compos. Struct., 193, 295-305. http://doi.org/10.1016/j.compstruct.2018.03.088.   DOI
33 Han, F., Dan, D. and Cheng, W. (2019), "Exact dynamic characteristic analysis of a double-beam system interconnected by a viscoelastic layer", Compos. Part B: Eng., 163, 272-281. http://doi.org/10.1016/j.compositesb.2018.11.043.   DOI
34 Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39, 315-323. http://doi.org/10.1016/j.commatsci.2006.06.011.   DOI
35 Iijima, S. (1991), "Helical Microtubles of Graphtic Carbon", Natur, 354, 56-58. http://doi.org/10.1038/354056a0.   DOI
36 Liu, S. and Yang, B. (2019), "A closed-form analytical solution method for vibration analysis of elastically connected doublebeam systems", Compos. Struct., 212, 598-608. http://doi.org/10.1016/j.compstruct.2019.01.038.   DOI
37 Lu, L., Wang, S., Li, M. and Guo, X. (2021b), "Free vibration and dynamic stability of functionally graded composite microtubes reinforced with graphene platelets", Compos. Struct., 272. http://doi.org/10.1016/j.compstruct.2021.114231.   DOI
38 Mallek, H., Jrad, H., Wali, M., Kessentini, A., Gamaoun, F. and Dammak, F. (2020), "Dynamic analysis of functionally graded carbon nanotube-reinforced shell structures with piezoelectric layers under dynamic loads", J. Vib. Control, 26, 1157-1172. http://doi.org/10.1177/1077546319892753.   DOI
39 Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Bedia, E.A.A., Mahmoud, S.R. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FGCNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput. Concrete, 26, 213-226. http://doi.org/10.12989/cac.2020.26.3.213.   DOI
40 Heshmati, M. and Yas, M.H. (2013), "Dynamic analysis of functionally graded multi-walled carbon nanotube-polystyrene nanocomposite beams subjected to multi-moving loads". Materials & Design 49, 894-904. http://doi.org/10.1016/j.matdes.2013.01.073   DOI
41 Janghorban, M. and Zare, A. (2011), "Free vibration analysis of functionally graded carbon nanotubes with variable thickness by differential quadrature method", Physica E: Low-dimen. Syst. Nanostruct., 43, 1602-1604. http://doi.org/10.1016/j.physe.2011.05.002.   DOI
42 Jun, L. and Hongxing, H. (2008), "Dynamic stiffness vibration analysis of an elastically connected three-beam system", ApAc 69, 591-600. http://doi.org/10.1016/j.apacoust.2007.02.005.   DOI
43 Khosravi, F., Simyari, M., Hosseini, S.A. and Tounsi, A. (2020), "Size dependent axial free and forced vibration of carbon nanotube via different rod models", Adv. Nano Res., 9, 157-172. http://doi.org/10.12989/anr.2020.9.3.157.   DOI
44 Abo-Bakr, H.M., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M. A. (2020a), "Weight optimization of axially functionally graded microbeams under buckling and vibration behaviors", Mech. Based Des. Struct. Machines, 1-22. http://doi.org/10.1080/15397734.2020.1838298.   DOI
45 Abo-Bakr, R.M., Eltaher, M.A. and Attia, M.A. (2020b), "Pull-in and freestanding instability of actuated functionally graded nanobeams including surface and stiffening effects", Eng. Comput., 38, 255-276. http://doi.org/10.1007/s00366-020-01146-0.   DOI
46 She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232.
47 Odom, T.W., Huang, J.L., Kim, P. and Lieber, C.M. (1998), "Atomic structure and electronic properties of single-walled carbon nanotubes", Nature, 391, 62-64. http://doi.org/10.1038/34145.   DOI
48 Ranjbar, M. and Feli, S. (2018), "Temperature-dependent analysis of axially functionally graded CNT reinforced micro-cantilever beams subjected to low velocity impact", Mech. Adv. Mater. Struct., 26, 1154-1168. http://doi.org/10.1080/15376494.2018.1432788.   DOI
49 She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin-Wall. Struct., 160, http://doi.org/10.1016/j.tws.2020.107407.   DOI
50 Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91, 9-19. http://doi.org/10.1016/j.compstruct.2009.04.026.   DOI
51 Ansari, M.I., Chaubey, A.K., Kumar, A., Chakrabarti, A. and Mishra, S.S. (2019), "Analysis of functionally graded carbon nanotube-reinforced laminates", Mater. Today: Proceedings 18, 628-637. http://doi.org/10.1016/j.matpr.2019.06.457.   DOI
52 Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2020), "Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method", Aeros. Sci. Technol., 105. http://doi.org/10.1016/j.ast.2020.105998.   DOI
53 She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Thermal Stresses, 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.   DOI
54 Adhikari, B. and Singh, B.N. (2019), "Dynamic Response of FGCNT Composite Plate Resting on an Elastic Foundation Based on Higher-Order Shear Deformation Theory", JAerE 32. http://doi.org/10.1061/(asce)as.1943-5525.0001052.   DOI
55 Alazwari, M.A., Abdelrahman, A.A., Wagih, A., Eltaher, M.A. and Abd-El-Mottaleb, H.E. (2021), "Static analysis of cutout microstructures incorporating the microstructure and surface effects", Steel Compos. Struct., 38, 583-597. http://doi.org/10.12989/scs.2021.38.5.583.   DOI
56 Alibeigloo, A. and Liew, K.M. (2013), "Thermoelastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity", Compos. Struct.,106, 873-881. http://doi.org/10.1016/j.compstruct.2013.07.002.   DOI
57 Arani, A.G., Kiani, F. and Afshari, H. (2021), "Free and forced vibration analysis of laminated functionally graded CNTreinforced composite cylindrical panels", J. Sandwich Struct. Mater., 23, 255-278. http://doi.org/10.1177/1099636219830787.   DOI
58 Cao, Y., Musharavati, F., Baharom, S., Talebizadehsardari, P., Sebaey, T.A., Eyvazian, A. and Zain, A.M. (2020), "Vibration response of FG-CNT-reinforced plates covered by magnetic layer utilizing numerical solution", Steel Compos. Struct., 37, 253-258. http://doi.org/10.12989/scs.2020.37.2.253.   DOI
59 Chen, X., Alian, A.R. and Meguid, S.A. (2019), "Modeling of CNT-reinforced nanocomposite with complex morphologies using modified embedded finite element technique", Compos. Struct., 227. http://doi.org/10.1016/j.compstruct.2019.111329.   DOI
60 Shen, H.S. and Xiang, Y. (2013), "Nonlinear analysis of nanotubereinforced composite beams resting on elastic foundations in thermal environments", Eng. Struct., 56, 698-708. http://doi.org/10.1016/j.engstruct.2013.06.002.   DOI
61 Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite plates", Mater. Des., 31, 3403-3411. http://doi.org/10.1016/j.matdes.2010.01.048.   DOI
62 Sofiyev, A.H., Tornabene, F., Dimitri, R. and Kuruoglu, N. (2020), "Buckling behavior of FG-CNT reinforced composite conical shells subjected to a combined loading", Nanomaterials (Basel) 10. http://doi.org/10.3390/nano10030419.   DOI
63 Subramani, M. and Ramamoorthy, M. (2021), "Vibration analysis of the multi-walled carbon nanotube reinforced doubly curved laminated composite shallow shell panels: An experimental and numerical study", J. Sandw. Struct. Mater., 23, 1594-1634. http://doi.org/10.1177/1099636219900484.   DOI
64 Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. http://dx.doi.org/10.12989/sem.2021.80.1.063.   DOI
65 Civalek, O. and Jalaei, M.H. (2020), "Shear buckling analysis of functionally graded (FG) carbon nanotube reinforced skew plates with different boundary conditions", Aeros. Sci. Technol. 99. http://doi.org/10.1016/j.ast.2020.105753.   DOI
66 Craveiro, D.S. and Loja, M.A.R. (2020), "A study on the effect of carbon nanotubes' distribution and agglomeration in the free vibration of nanocomposite plates", C 6. http://doi.org/10.3390/c6040079.   DOI
67 Daikh, A.A., Houari, M.S.A., Karami, B., Eltaher, M.A., Dimitri, R. and Tornabene, F. (2021), "Buckling analysis of CNTRC curved sandwich nanobeams in thermal environment", Appl. Sci., 11. http://doi.org/10.3390/app11073250.   DOI
68 Shen, H.S. (2014), "Torsional postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments", Compos. Struct., 116, 477-488. http://doi.org/10.1016/j.compstruct.2014.05.039.   DOI