• Title/Summary/Keyword: carbon nanostructures

Search Result 101, Processing Time 0.025 seconds

Fabrication of carbon nanostructures using electron beam lithography and pyrolysis for biosensing applications (전자빔 리소그래피와 열처리를 이용한 탄소 나노구조물의 제작 및 바이오센싱 응용연구)

  • Lee, Jung-A;Lee, Kwang-Cheol;Park, Se-Il;Lee, Seung-S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1727-1732
    • /
    • 2008
  • We present a facile, yet versatile carbon nanofabrication method using electron beam lithography and resist pyrolysis. Various resist nanopatterns were fabricated using a negative electron beam resist, SAL-601, and were then subjected to heat treatment in an inert atmosphere to obtain carbon nanopatterns. Suspended carbon nanostructures were fabricated by wet-etching of an underlying sacrificial oxide layer. Free-standing carbon nanostructures, which contain 122 nm-wide, 15 nm-thick, and 2 ${\mu}m$-long nanobridges, were fabricated by resist pyrolysis and nanomachining processes. Electron beam exposure dose effects on resist thickness and pattern widening were studied. The thickness of the carbon nanostructures was thinned down by etching with oxygen plasma. An electrical biosensor utilizing carbon nanostructures as a conducting channel was studied. Conductance modulations of the carbon device due to streptavidin-biotin binding and pH variations were observed.

  • PDF

Fabrication of various carbon nanostructures by using different catalysts (촉매에 따른 다양한 탄소나노구조체 합성)

  • Choi, Kang-Ho;Yoo, In-Joon;Lee, Hee-Soo;Lee, Kyu-Hwan;Lim, Dong-Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.3
    • /
    • pp.133-140
    • /
    • 2010
  • Carbon fiber has many potential applications in a wide array of fields of solar cell, fuel cell, batteries, and polymer matrix composites due to an exceptional mechanical properties and chemical stability. In this study, the effects of catalysts on the property of carbon nanostructures grown on the carbon fiber were systematically investigated. The surface treatment of carbon fiber and catalysts synthesis for carbon nanostructures growth were carried out by one-pot ELP method and thermal CVD, respectively. The surface morphology and crystal structure of carbon nanostructures were examined using a field emission scanning electron microscope and transmission electron microscope. Depending on the type of catalysts and the molar ratio, various types of carbon nanostructures like carbon nanotube, carbon nanofilament, carbon nanospring and etc. were synthesized on the surface of carbon fibers surface.

Adsorption of Nile Blue A from aqueous solution by different nanostructured carbon adsorbents

  • Abbasi, Shahryar;Noorizadeh, Hadi
    • Carbon letters
    • /
    • v.23
    • /
    • pp.30-37
    • /
    • 2017
  • Dyes are widely used in various industries including textile, cosmetic, paper, plastics, rubber, and coating, and their discharge into waterways causes serious environmental and health problems. Four different carbon nanostructures, graphene oxide, oxidized multi-walled carbon nanotubes, activated carbon and multi-walled carbon nanotubes, were used as adsorbents for the removal of Nile Blue A (NBA) dye from aqueous solution. The four carbon nanostructures were characterized by scanning electron microscope and X-ray diffractometer. The effects of various parameters were investigated. Kinetic adsorption data were analyzed using the first-order model and the pseudo-second-order model. The regression results showed that the adsorption kinetics were more accurately represented by the pseudo-second-order model. The equilibrium data for the aqueous solutions were fitted to Langmuir and Freundlich isotherms, and the equilibrium adsorption of NBA was best described by the Langmuir isotherm model. This is the first research on the removal of dye using four carbon nanostructures adsorbents.

Heteroatom-doped carbon nanostructures as non-precious cathode catalysts for PEMFC (이종 원자 도핑 탄소 나노재료를 이용한 PEMFC Cathode용 촉매 합성 및 평가)

  • Jo, G.Y.;Shanmugam, S.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.406-409
    • /
    • 2012
  • Recently, enormous research efforts have been focused on the development of non-precious catalysts to replace Pt for electrocatalytic oxygen reduction reaction (ORR), and to reduce the cost of proton exchange membrane fuel cells (PEMFCs). In recent years, heteroatom (N, B, and P) doped carbon nanostructures have been received enormous importance as a non-precious electrode materials for oxygen reduction. Doping of foreign atom into carbon is able to modify electronic properties of carbon materials. In this study, nitrogen and boron doped carbon nanostructures were synthesized by using a facile and cost-effective thermal annealing route and prepared nanostructures were used as a non-precious electrocatalysts for the ORR in alkaline electrolyte. The nitrogen doped carbon nanocapsules (NCNCs) exhibited higher activity than that of a commercial Pt/C catalyst, excellent stability and resistance to methanol oxidation. The boron-doped carbon nanostructure (BC) prepared at $900^{\circ}C$ showed higher ORR activity than BCs prepared lower temperature (800, $700^{\circ}C$). The heteroatom doped carbon nanomaterials could be promising candidates as a metal-free catalysts for ORR in the PEMFCs.

  • PDF

Synthesis and optical properties of star-like ZnO nanostructures grown on with carbon catalyst (탄소 촉매에 의하여 성장된 별-모양 ZnO 나노 구조물의 합성과 광학적 특성)

  • Jung, Il-Hyun;Chae, Myung-Sic;Lee, Ui-Am
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.1-6
    • /
    • 2010
  • Star-like ZnO nanostructures were grown on SI(100) substrates with carbon(C) catalyst by employing vapor-solid(VS) mechanism. The morphologies and structure of ZnO nanostructures were investigated by Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Raman spectrum, Photoluminescence spectrum. The results demonstrated that the as-synthesized products consisted of star-like ZnO nanostructure with hexagonal wurtzite phase. Nanostructures grown at 1100 were mainly star-like in structure with diameters of 500 nm. The legs of the star-like nanostructures were preferentially grown up along the [0001] direction. A vapor.solid (VS) growth mechanism was proposed to explain the formation of the star-like structures. Photoluminescence spectrum exhibited a narrow emission band peak around 380 nm and a broad one around 491 nm. Raman spectrum of the ZnO nanostructures showed oxygen defects in ZnO nanostructures due to the existence of Ar gas during the growth process, leading to the dominant green band peak in the PL spectrum.

Carbon nanotubes synthesis using diffusion and premixed flame methods: a review

  • Mittal, Garima;Dhand, Vivek;Rhee, Kyong Yop;Kim, Hyeon-Ju;Jung, Dong Ho
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • In recent years, flame synthesis has absorbed a great deal of attention as a combustion method for the production of metal oxide nanoparticles, carbon nanotubes, and other related carbon nanostructures, over the existing conventional methods. Flame synthesis is an energy-efficient, scalable, cost-effective, rapid and continuous process, where flame provides the necessary chemical species for the nucleation of carbon structures (feed stock or precursor) and the energy for the production of carbon nanostructures. The production yield can be optimized by altering various parameters such as fuel profile, equivalence ratio, catalyst chemistry and structure, burner configuration and residence time. In the present report, diffusion and premixed flame synthesis methods are reviewed to develop a better understanding of factors affecting the morphology, positioning, purity, uniformity and scalability for the development of carbon nanotubes along with their correlated carbonaceous derivative nanostructures.

Morphologically Controlled Growth of Aluminum Nitride Nanostructures by the Carbothermal Reduction and Nitridation Method

  • Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1563-1566
    • /
    • 2009
  • One-dimensional aluminum nitride (AlN) nanostructures were synthesized by calcining an Al(OH)(succinate) complex, which contained a very small amount of iron as a catalyst, under a mixed gas flow of nitrogen and CO (1 vol%). The complex decomposed into a homogeneous mixture of alumina and carbon at the molecular level, resulting in the lowering of the formation temperature of the AlN nanostructures. The morphology of the nanostructures such as nanocone, nanoneedle, nanowire, and nanobamboo was controlled by varying the reaction conditions, including the reaction atmosphere, reaction temperature, duration time, and ramping rate. Iron droplets were observed on the tips of the AlN nanostructures, strongly supporting that the nanostructures grow through the vapor-liquid-solid mechanism. The variation in the morphology of the nanostructures was well explained in terms of the relationship between the diffusion rate of AlN vapor into the iron droplets and the growth rate of the nanostructures.

Position-Selective Metal Oxide Nanostructures using Atomic Thin Carbon Layer for Hydrogen Gas Sensors

  • Yu, Hak Ki
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.369-373
    • /
    • 2020
  • A hydrogen sensor was fabricated by utilizing a bundle of metal oxide nanostructures whose growth positions were selectively controlled by utilizing graphene, which is a carbon of atomic-unit thickness. To verify the reducing ability of graphene, it was confirmed that the multi-composition metal oxide V2O5 was converted into VO2 on the graphene surface. Because of the role of graphene as a reducing catalyst, it was confirmed that ZnO and MoO3 nanostructures were grown at high density only on the graphene surface. The fabricated gas sensor showed excellent sensitivity.

One-step microwave synthesis of surface functionalized carbon fiber fabric by ZnO nanostructures

  • Ravi S. Rai;Vivek Bajpai
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.557-573
    • /
    • 2023
  • The rapid growth of zinc-oxide (ZnO) nanostructures (NSs) on woven carbon fiber (WCF) is reported in this study employing a microwave-aided chemical bath deposition process. The effects of different process parameters such as molar concentration, microwave duration and microwave power on morphologies and growth rate of the ZnO on WCF were studied. Furthermore, an attempt has been taken to study influence of different type of growth solutions on ZnO morphologies and growth rates. The surface functionalization of WCF fabrics is achieved by successful growth of crystalline ZnO on fiber surface in a very short duration through one-step microwave synthesis. The morphological, structural and compositional studies of ZnO-modified WCF are evaluated using field-emission scanning electron microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy respectively. Good amount of zinc and oxygen has been seen in the surface of WCF. The presence of the wurtzite phase of ZnO having crystallite size 30-40 nm calculated using the Debye Scherrer method enhances the surface characteristics of WCF fabrics. The UV-VIS spectroscopy is used to investigate optical properties of ZnO-modified WCF samples by absorbance, transmittance and reflectance spectra. The variation of different parameters such as dielectric constants, optical conductivity, refractive index and extinction coefficient are examined that revealed the enhancement of optical characteristics of carbon fiber for wide applications in optoelectronic devices, carbon fiber composites and photonics.