Browse > Article
http://dx.doi.org/10.5012/bkcs.2009.30.7.1563

Morphologically Controlled Growth of Aluminum Nitride Nanostructures by the Carbothermal Reduction and Nitridation Method  

Jung, Woo-Sik (School of Display and Chemical Engineering, College of Engineering, Yeungnam University)
Publication Information
Abstract
One-dimensional aluminum nitride (AlN) nanostructures were synthesized by calcining an Al(OH)(succinate) complex, which contained a very small amount of iron as a catalyst, under a mixed gas flow of nitrogen and CO (1 vol%). The complex decomposed into a homogeneous mixture of alumina and carbon at the molecular level, resulting in the lowering of the formation temperature of the AlN nanostructures. The morphology of the nanostructures such as nanocone, nanoneedle, nanowire, and nanobamboo was controlled by varying the reaction conditions, including the reaction atmosphere, reaction temperature, duration time, and ramping rate. Iron droplets were observed on the tips of the AlN nanostructures, strongly supporting that the nanostructures grow through the vapor-liquid-solid mechanism. The variation in the morphology of the nanostructures was well explained in terms of the relationship between the diffusion rate of AlN vapor into the iron droplets and the growth rate of the nanostructures.
Keywords
AlN; Nanostructures; VLS mechanism;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Jung, W.-S.; Joo, H. U. J. Crystal Growth 2005, 285, 566   DOI   ScienceOn
2 Caceres, P. G.; Schmid, H. K. J. Am. Ceram. Soc. 1994, 77, 977   DOI   ScienceOn
3 Miao, W.-G.; Wu, Y.; Zhou, H.-P. J. Mater. Sci. 1997, 32, 1969   DOI   ScienceOn
4 Fu, R.; Zhou, H.; Chen, L.; Wu, Y. Mater. Sci. Eng. A 1999, 266, 44   DOI   ScienceOn
5 Jung, W.-S.; Ahn, S.-K. J. Mater. Chem. 1994, 4, 949   DOI   ScienceOn
6 Jung, W.-S.; Joo, H. U. Physica E 2008, 40, 833   DOI   ScienceOn
7 Joo, H. U.; Jung, W.-S. J. Mater. Proc. Technol. 2008, 204, 498   DOI   ScienceOn
8 Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89   DOI
9 Yin, L.-W.; Bando, Y.; Zhu, Y.-C.; Li, M.-S.; Tang, C.-C.; Golberg, D. Adv. Mater. 2005, 17, 213   DOI   ScienceOn
10 Wu, Q.; Hu, Z.; Wang, X.; Chen, Y.; Lu, Y. J. Phys. Chem. B 2003, 107, 9726   DOI   ScienceOn
11 Bonard, J. M.; Kind, H.; Stockli, A. T.; Nilsson, L. O. Solid-State Electron. 2001, 45, 893   DOI   ScienceOn
12 Haber, J. A.; Gibbons, P. C.; Buhro, W. E. Chem. Mater. 1998, 10, 4062   DOI   ScienceOn
13 Zhang, Y.; Liu, J.; He, R.; Zhang, Q.; Zhang, X.; Zhu, J. Chem. Mater. 2001, 13, 3899   DOI   ScienceOn
14 Wu, Q.; Hu, Z.; Wang, X.; Lu, Y.; Huo, K.; Deng, S.; Xu, N.; Shen, B.; Zhang, R.; Chen, Y. J. Mater. Chem. 2003, 13, 2024   DOI   ScienceOn
15 Liu, C.; Hu, Z.; Wu, Q.; Wang, X.; Chen, Y.; Sang, H.; Zhu, J.; Deng, S.; Xu, N. J. Am. Chem. Soc. 2005, 127, 1318   DOI   ScienceOn
16 Shi, S.-C.; Chen, C.-F.; Chattopadhyay, S.; Lan, Z.-H.; Chen, K.-H.; Chen, L.-C. Adv. Func. Mater. 2005, 15, 781   DOI   ScienceOn
17 Shi, S.-C.; Chattopadhyay, S.; Chen, C.-F.; Chen, K.-H.; Chen, L.-C. Chem. Phys. Lett. 2006, 418, 152   DOI   ScienceOn
18 Tondare, V. N.; Balasubramanian, C.; Shene, S. V.; Joag, D. S.; Godbole, V. P.; Bhoraskra, S. V. Appl. Phys. Lett. 2002, 80, 4813   DOI   ScienceOn
19 Sheppard, L. M. Am. Ceram. Soc. Bull. 1990, 31, 1801
20 Wu, Q.; Hu, Z.; Wang, X.; Lu, Y.; Chen, X.; Xu, H.; Chen, Y. J. Am. Chem. Soc. 2003, 125, 10176   DOI   ScienceOn
21 Wu, C. I.; Kahn, A.; Hellmann, E. S.; Buchanan, D. N. Appl. Phys. Lett. 1998, 73, 1346   DOI   ScienceOn