DOI QR코드

DOI QR Code

One-step microwave synthesis of surface functionalized carbon fiber fabric by ZnO nanostructures

  • Ravi S. Rai (Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad) ;
  • Vivek Bajpai (Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad)
  • Received : 2022.04.15
  • Accepted : 2023.11.23
  • Published : 2023.06.25

Abstract

The rapid growth of zinc-oxide (ZnO) nanostructures (NSs) on woven carbon fiber (WCF) is reported in this study employing a microwave-aided chemical bath deposition process. The effects of different process parameters such as molar concentration, microwave duration and microwave power on morphologies and growth rate of the ZnO on WCF were studied. Furthermore, an attempt has been taken to study influence of different type of growth solutions on ZnO morphologies and growth rates. The surface functionalization of WCF fabrics is achieved by successful growth of crystalline ZnO on fiber surface in a very short duration through one-step microwave synthesis. The morphological, structural and compositional studies of ZnO-modified WCF are evaluated using field-emission scanning electron microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy respectively. Good amount of zinc and oxygen has been seen in the surface of WCF. The presence of the wurtzite phase of ZnO having crystallite size 30-40 nm calculated using the Debye Scherrer method enhances the surface characteristics of WCF fabrics. The UV-VIS spectroscopy is used to investigate optical properties of ZnO-modified WCF samples by absorbance, transmittance and reflectance spectra. The variation of different parameters such as dielectric constants, optical conductivity, refractive index and extinction coefficient are examined that revealed the enhancement of optical characteristics of carbon fiber for wide applications in optoelectronic devices, carbon fiber composites and photonics.

Keywords

Acknowledgement

Ravi Shankar Rai, Research Scholar, IIT-(ISM), Dhanbad, India, Dr. Vivek Bajpai, Assistant Professor, IIT-(ISM), Dhanbad, India have not been funded in any way to perform this research activities.

References

  1. Ahmed, F., Arshi, N., Anwar, M.S., Danish, R. and Koo, B.H. (2014), "Morphological evolution of ZnO nanostructures and their aspect ratio-induced enhancement in photocatalytic properties", RSC Adv., 4(55), 29249-29263. https://doi.org/10.1039/C4RA02470B.
  2. Al-Gaashani, R., Radiman, S., Daud, A.R., Tabet, N. and Al-Douri, Y. (2013), "XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods", Ceram. Int., 39(3), 2283-2292. https://doi.org/10.1016/j.ceramint.2012.08.075.
  3. Alshamarti, H.A. and Omran Alkhayatt, A.H. (2020), "Enhancement characterization of the MSM detector based on Mn doped-ZnO NRS synthesized by microwave assisted chemical bath deposition", Mater. Sci. Semiconduct. Proc., 114, 105068. https://doi.org/10.1016/j.mssp.2020.105068.
  4. Andrade Neto, N.F., Matsui, K.N., Paskocimas, C.A., Bomio, M.R.D. and Motta, F.V. (2019), "Study of the photocatalysis and increase of antimicrobial properties of Fe 3+ and Pb 2+ co-doped ZnO nanoparticles obtained by microwave-assisted hydrothermal method", Mater. Sci. Semiconduct. Proc., 93, 123-133. https://doi.org/10.1016/j.mssp.2018.12.034.
  5. Arani, A.G., Farazin, A. and Mohammadimehr, M. (2021), "The effect of nanoparticles on enhancement of the specific mechanical properties of the composite structures: A review research", Adv. Nano Res., 10(4), 327-337. https://doi.org/10.12989/anr.2021.10.4.327.
  6. Baizaee, S.M., Arabi, M. and Bahador, A.R. (2018), "A simple, one-pot, low temperature and pressure route for the synthesis of RGO/ZnO nanocomposite and investigating its photocatalytic activity", Mater. Sci. Semiconduct. Proc., 82, 135-142. https://doi.org/10.1016/j.mssp.2018.04.004.
  7. Baruah, S. and Dutta, J. (2009), "Hydrothermal growth of ZnO nanostructures", Sci. Technol. Adv. Mater., 10, 013001. https://doi.org/10.1088/1468-6996/10/1/013001.
  8. Bhammar, N.A., Udeshi, B., Dadhich, H., Dhokiya, V., Gadani, K., Venkateshwarlu, D., Venkatesh, R., Ganesan, V., Joshi, A.D., Solanki, P.S. and Shah, N.A. (2021), "Transport properties, charge conduction mechanism and magnetic behavior of La0.3Ca0.7MnO3:ZnO Nanocomposites", Mater. Sci. Semiconduct. Proc., 135, 106-130. https://doi.org/10.1016/j.mssp.2021.106130.
  9. Caglar, M., Ilican, S., Caglar, Y. and Yakuphanoglu, F. (2009), "Electrical conductivity and optical properties of ZnO nanostructured thin film", Appl. Surf. Sci., 255(8), 4491-4496. https://doi.org/10.1016/j.apsusc.2008.11.055.
  10. Caglar, Y., Gorgun, K. and Aksoy, S. (2015), "Effect of deposition parameters on the structural properties of ZnO nanopowders prepared by microwave-assisted hydrothermal synthesis", Spectrochimica Acta A, 138, 617-622. https://doi.org/10.1016/j.saa.2014.12.008.
  11. Chankaew, C., Tapala, W., Grudpan, K. and Rujiwatra, A. (2019), "Microwave synthesis of ZnO nanoparticles using longan seeds biowaste and their efficiencies in photocatalytic decolorization of organic dyes", Environ. Sci. Pollut. Res., 26(17), 17548-17554. https://doi.org/10.1007/s11356-019-05099-w.
  12. Cheng, D., He, M., Li, W., Wu, J., Ran, J., Cai, G. and Wang, X. (2019), "Hydrothermal growing of cluster-like ZnO nanoparticles without crystal seeding on PET films via dopamine anchor", Appl. Surf. Sci., 467-468, 534-542. https://doi.org/10.1016/j.apsusc.2018.10.177.
  13. Cheng, Z., Song, H., Zhang, X., Cheng, X., Xu, Y., Zhao, H., Gao, S. and Huo, L. (2021), "Morphology control of ZnO by adjusting the solvent and non-enzymatic nitrite ions electrochemical sensor constructed with stir bar-shaped ZnO/Nafion nanocomposite, Sensors Actuat. B Chem., 346, 130-525. https://doi.org/10.1016/j.snb.2021.130525.
  14. Cortes Herrera, R.B., Kryshtab, T., Andraca Adame, J.A. and Kryvko, A. (2017), "ZnO thin films with Cu, Ga and Ag dopants prepared by ZnS oxidation in different ambient", Adv. Nano Res., 5(3), 193-201. https://doi.org/10.12989/anr.2017.5.3.193.
  15. Deka, B.K., Hazarika, A., Kong, K., Kim, D., Park, Y. Bin, and Park, H.W. (2016), "Interfacial resistive heating and mechanical properties of graphene oxide assisted CuO nanoparticles in woven carbon fiber/polyester composite", Compo. Part A Appl. Sci. Manuf., 80, 159-170. https://doi.org/10.1016/j.compositesa.2015.10.023.
  16. Deka, B.K., Hazarika, A., Kwon, O.B., Kim, D.Y., Park, Y.B, and Park, H.W. (2017), "Multifunctional enhancement of woven carbon fiber/ZnO nanotube-based structural supercapacitor and polyester resin-domain solid-polymer electrolytes", Chem. Eng. J., 325, 672-680. https://doi.org/10.1016/j.cej.2017.05.093.
  17. Edalati, K., Shakiba, A., Vahdati-Khaki, J. and Zebarjad, S.M. (2016), "Low-temperature hydrothermal synthesis of ZnO nanorods: Effects of zinc salt concentration, various solvents and alkaline mineralizers", Mater. Res. Bull., 74, 374-379. https://doi.org/10.1016/j.materresbull.2015.11.001.
  18. El-Nahas, S., El-sadek, M.S.A., Salman, H.M. and Elkady, M.M. (2021), "Controlled morphological and physical properties of ZnO nanostructures synthesized by domestic microwave route", Mater. Chem. Phys., 258, 123-885. https://doi.org/10.1016/j.matchemphys.2020.123885.
  19. Feng, T., Liu, N., Wang, S., Qin, C., Shi, S., Zeng, X. and Liu, G. (2021), "Research on the dispersion of carbon nanotubes and their application in solution-processed polymeric matrix composites: A review", Adv. Nano Res., 10(6), 559-576. https://doi.org/10.12989/anr.2021.10.6.545.
  20. Forsat, M., Musharavati, F., Eltai, E., Zain, A.M., Mobayen, S. and Mohamed, A.M. (2021), "Vibration characteristics of microplates with GNPs-reinforced epoxy core bonded to piezoelectric-reinforced CNTs patches", Adv. Nano Res., 11(2), 115-140. https://doi.org/10.12989/anr.2021.11.2.115.
  21. Ganesan, V., Hariram, M., Vivekanandhan, S. and Muthuramkumar, S. (2020), "Periconium sp. (endophytic fungi) extract mediated sol-gel synthesis of ZnO nanoparticles for antimicrobial and antioxidant applications", Mater. Sci. Semiconduct. Proc., 105, 104-739. https://doi.org/10.1016/j.mssp.2019.104739.
  22. Gusmao, L.A., Peixoto, D.A., Marinho, J.Z., Romeiro, F.C., Goncalves, R.F., Longo, E., de Oliveira, C.A. and Lima, R.C. (2021), "Alkali influence on ZnO and Ag-doped ZnO nanostructures formation using the microwave-assisted hydrothermal method for fungicidal inhibition", J. Phys. Chem. Solids, 158, 110-234. https://doi.org/10.1016/j.jpcs.2021.110234.
  23. Hazarika, A., Deka, B.K., Kim, D. Y., Kong, K., Park, Y. Bin, and Park, H.W. (2015), "Growth of aligned ZnO nanorods on woven Kevlar® fiber and its performance in woven Kevlar® fiber/polyester composites", Compos. Part A, 78, 284-293. https://doi.org/10.1016/j.compositesa.2015.08.022.
  24. Jia, Z., Kong, M., Yu, B., Ma, Y., Pan, J. and Wu, G. (2022), "Tunable Co/ZnO/C@ MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties", J. Mater. Sci. Technol., 127, 153-163. https://doi.org/10.1016/j.jmst.2022.04.005.
  25. Jia, Z., Liu, X., Zhou, X., Zhou, Z. and Wu, G. (2022), "A seed germination-inspired interface polarization augmentation strategy toward superior electromagnetic absorption performance", Compos. Commun., 34, 101269. https://doi.org/10.1016/j.coco.2022.101269.
  26. Kim, S.O., Shim, J.B. and Chang, H. (2011), "Rapid hydrothermal synthesis of zinc oxide nanowires by annealing methods on seed layers", J. Nanomater., 2011, 582764. https://doi.org/10.1155/2011/582764.
  27. Kong, K., Deka, B.K., Kwak, S.K., Oh, A., Kim, H., Park, Y.B., and Park, H.W. (2013), "Processing and mechanical characterization of ZnO/polyester woven carbon-fiber composites with different ZnO concentrations", Compos. Part A, 55, 152-160. https://doi.org/10.1016/j.compositesa.2013.08.013.
  28. Kothari, A. and Chaudhuri, T.K. (2011), "One-minute microwave-assisted chemical bath deposition of nanostructured ZnO rod-arrays", Mater. Lett., 65(5), 847-849. https://doi.org/10.1016/j.matlet.2010.12.017.
  29. Kumar, D., Rai, R.S., and Singh, N.K. (2020), "An innovative approach to deposit ultrathin ZnO nanoflakes (2D) through hydrothermal assisted electrochemical discharge deposition and growth method", Ceram. Int., 46(16), 26216-26220. https://doi.org/10.1016/j.ceramint.2020.07.009.
  30. Kumar, V.V.S. and Kanjilal, D. (2018), "Influence of post-deposition annealing on structural, optical and transport properties of nanocomposite ZnO-Ag thin films", Mater. Sci. Semiconduct. Proc., 81, 22-29. https://doi.org/10.1016/j.mssp.2018.03.002.
  31. Kurtinaitiene, M., Mazeika, K., Ramanavicius, S., Pakstas, V. and Jagminas, A. (2016), "Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles", Adv. Nano Res., 4(1), 1-14. https://doi.org/10.12989/anr.2016.4.1.001.
  32. Liu, Z., Li, L., Yuan, X. and Yang, P. (2020), "Study on photoelectric properties of Si supported ZnO", J. Alloys Compd., 843, 155909. https://doi.org/10.1016/j.jallcom.2020.155909.
  33. Liu, Y., Jia, Z., Zhou, J. and Wu, G. (2022), "Multi-hierarchy heterostructure assembling on MnO2 nanowires for optimized electromagnetic response", Mater. Today Phys., 28, 100845. https://doi.org/10.1016/j.mtphys.2022.100845.
  34. Liu, J., Jia, Z., Dong, Y., Li, J., Cao, X. and Wu, G. (2022), "Structural engineering and compositional manipulation for high-efficiency electromagnetic microwave absorption", Mater. Today Phys., 27, 100801. https://doi.org/10.1016/j.mtphys.2022.100801.
  35. Ma, J., Chen, B., Chen, B., and Zhang, S. (2017), "Preparation of superparamagnetic ZnFe2O4 submicrospheres via a solvothermal method", Adv. Nano Res., 5(2), 171-178. https://doi.org/10.12989/anr.2017.5.2.171.
  36. Mallakpour, S., Sirous, F. and Hussain, C.M. (2021), "A journey to the world of fascinating ZnO nanocomposites made of chitosan, starch, cellulose, and other biopolymers: Progress in recent achievements in eco-friendly food packaging, biomedical, and water remediation technologies", Int. J. Biol. Macromol., 170, 701-716. https://doi.org/10.1016/j.ijbiomac.2020.12.163.
  37. Marin-Flores, C.A., Rodriguez-Nava, O., Garcia-Hernandez, M., Ruiz-Guerrero, R., Juarez-Lopez, F. and Morales-Ramirez, A.J. (2021), "Free-radical scavenging activity properties of ZnO sub-micron particles: size effect and kinetics", J. Mater. Res. Technol., 13, 1665-1675. https://doi.org/10.1016/j.jmrt.2021.05.050.
  38. Moss, T.S., Burrell, G.J., Ellis, B., and Omar, M.A. (1974), "Semiconductor opto-electronics", Phys. Today, 27(2), 59. https://doi.org/10.1063/1.3128454.
  39. Newcomb, B.A. (2016), "Processing, structure, and properties of carbon fibers", Compos. Part A, 91(1), 262-282. https://doi.org/10.1016/j.compositesa.2016.10.018.
  40. Ozdemira, O.O. and Soyer, F. (2021), "Synthesis, characterization, and antimicrobial activities of 3-HPAA-Alg-Chi nanoparticles", Adv. Nano Res., 11(3), 227-237. https://doi.org/10.12989/anr.2021.11.3.227.
  41. Patino-Portela, M.C., Arciniegas-Grijalba, P.A., Mosquera-Sanchez, L.P., Sierra, B.E.G., Munoz-Florez, J.E., Erazo-Castillo, L.A. and Rodriguez-Paez, J.E. (2021), "Effect of method of synthesis on antifungal ability of ZnO nanoparticles: Chemical route vs green route", Adv. Nano Res., 10(2), 191-210. https://doi.org/10.12989/anr.2021.10.2.191.
  42. Piccardo, M., Li, C.K., Wu, Y.R., Speck, J.S., Bonef, B., Farrell, R.M., Filoche, M., Martinelli, L., Peretti, J. and Weisbuch, C. (2017), "Localization landscape theory of disorder in semiconductors. II. Urbach tails of disordered quantum well layers", Phys. Rev. B, 95(14), 144-205. https://doi.org/10.1103/PhysRevB.95.144205.
  43. Radhakrishnan, J.K. and Kumara, M. (2021), "Growth of ZnO nanostructures: Cones, rods and hallow-rods, by microwave assisted wet chemical growth and their characterization", Ceram. Int., 47(4), 5300-5310. https://doi.org/10.1016/j.ceramint.2020.10.110.
  44. Rai, R.S. and Bajpai, V. (2021a), "Hydrothermally grown ZnO NSs on Bi-Directional woven carbon fiber and effect of synthesis parameters on morphology", Ceram. Int., 47(6), 8208-8217. https://doi.org/10.1016/j.ceramint.2020.11.180.
  45. Rai, R.S. and Bajpai, V. (2021b), "Recent advances in ZnO nanostructures and their future perspective", Adv. Nano Res., 11(1), 37-54. https://doi.org/10.12989/anr.2021.11.1.037.
  46. Sahin, B. and Kaya, T. (2021), "Facile preparation and characterization of nanostructured ZnO/CuO composite thin film for sweat concentration sensing applications", Mater. Sci. Semiconduct. Proc., 121, 105428. https://doi.org/10.1016/j.mssp.2020.105428.
  47. Shah, A.H. and Rather, M.A. (2021), "Pharmaceutical residues: New emerging contaminants and their mitigation by nano-photocatalysis", Adv. Nano Res., 10(4), 397-414. https://doi.org/10.12989/anr.2021.10.4.397.
  48. Singh, P.P. and Azam, M.S. (2021), "Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method", Adv. Nano Res., 10(1), 25-42. https://doi.org/10.12989/anr.2021.10.1.025.
  49. Ul Hassan Sarwar Rana, A., Kang, M. and Kim, H.S. (2016), "Microwave-assisted facile and ultrafast growth of ZnO nanostructures and proposition of alternative microwave-assisted methods to address growth stoppage", Sci. Rep., 6(24870), 1-13. https://doi.org/10.1038/srep24870.
  50. Wang, Y., Yang, J., Li, Y., Jiang, T., Chen, J. and Wang, J. (2015), "Controllable preparation of ZnO nanostructure using hydrothermal-electrodeposited method and its properties", Mater. Chem. Phys., 153, 266-273. https://doi.org/10.1016/j.matchemphys.2015.01.013.
  51. Zhang, Z.Y. and Xiong, H.M. (2015), "Photoluminescent ZnO nanoparticles and their biological applications", Materials, 8(6), 3101-3127. https://doi.org/10.3390/ma8063101.
  52. Zhao, Z., Liu, W., Jiang, Y., Wan, Y., Du, R. and Li, H. (2022), "Solidification of heavy metals in lead smelting slag and development of cementitious materials", J. Clean. Prod., 359, 132134. https://doi.org/10.1016/j.jclepro.2022.132134.