Browse > Article
http://dx.doi.org/10.5714/CL.2015.16.1.001

Carbon nanotubes synthesis using diffusion and premixed flame methods: a review  

Mittal, Garima (Department of Mechanical Engineering, College of Engineering, Kyung Hee University)
Dhand, Vivek (Department of Mechanical Engineering, College of Engineering, Kyung Hee University)
Rhee, Kyong Yop (Department of Mechanical Engineering, College of Engineering, Kyung Hee University)
Kim, Hyeon-Ju (Maritime and Ocean Engineering Research Institute, Korea Institute of Ocean Science and Technology)
Jung, Dong Ho (Maritime and Ocean Engineering Research Institute, Korea Institute of Ocean Science and Technology)
Publication Information
Carbon letters / v.16, no.1, 2015 , pp. 1-10 More about this Journal
Abstract
In recent years, flame synthesis has absorbed a great deal of attention as a combustion method for the production of metal oxide nanoparticles, carbon nanotubes, and other related carbon nanostructures, over the existing conventional methods. Flame synthesis is an energy-efficient, scalable, cost-effective, rapid and continuous process, where flame provides the necessary chemical species for the nucleation of carbon structures (feed stock or precursor) and the energy for the production of carbon nanostructures. The production yield can be optimized by altering various parameters such as fuel profile, equivalence ratio, catalyst chemistry and structure, burner configuration and residence time. In the present report, diffusion and premixed flame synthesis methods are reviewed to develop a better understanding of factors affecting the morphology, positioning, purity, uniformity and scalability for the development of carbon nanotubes along with their correlated carbonaceous derivative nanostructures.
Keywords
flame synthesis; diffusion flame; premixed flame; carbon nano structures; nanotubes;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Lau KT, Wong TT, Leng J, Hui D, Rhee KY. Property enhancement of polymer-based composites at cryogenic environment by using tailored carbon nanotubes. Composites B, 54, 41 (2013). http://dx.doi.org/10.1016/j.compositesb.2013.03.044.   DOI
2 Lim JI, Rhee KY, Kim HJ, Jung DH. Effect of stacking sequence on the flexural and fracture properties of carbon/basalt/epoxy hybrid composites. Carbon Lett, 15, 125 (2014). http://dx.doi.org/10.5714/CL.2014.15.2.125.   과학기술학회마을   DOI
3 Kshirsagar DE, Puri V, Sharon M, Sharon M. Microwave absorption study of carbon nano materials synthesized from natural oils. Carbon Lett, 7, 245 (2006).
4 Kim MS, Lim SM, Song MY, Cho HJ, Choi YH, Yu JS. Acid treatments of carbon nanotubes and their application as Pt-Ru/CNT anode catalysts for proton exchange membrane fuel cell. Carbon Lett, 11, 336 (2010). http://dx.doi.org/10.5714/CL.2010.11.4.336.   과학기술학회마을   DOI
5 Gore JP, Sane A. Flame synthesis of carbon nanotubes. In: Yellampalli S, ed. Carbon Nanotubes: Synthesis, Characterization, Applications, InTech, Chapter 7 (2011). http://dx.doi.org/10.5772/21012.
6 Saito K, Gordon AS, Williams FA, Stickle WF. A study of the early history of soot formation in various hydrocarbon diffusion flames. Combust Sci Technol, 80, 103 (1991). http://dx.doi.org/10.1080/00102209108951779.   DOI
7 Yuan L, Li T, Saito K. Growth mechanism of carbon nanotubes in methane diffusion flames. Carbon, 41, 1889 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00204-5.   DOI
8 Yuan L, Saito K, Hu W, Chen Z. Ethylene flame synthesis of wellaligned multi-walled carbon nanotubes. Chem Phys Lett, 346, 23 (2001). http://dx.doi.org/10.1016/S0009-2614(01)00959-9.   DOI
9 Vander Wal RL, Ticich TM, Curtis VE. Diffusion flame synthesis of single-walled carbon nanotubes. Chem Phys Lett, 323, 217 (2000). http://dx.doi.org/10.1016/S0009-2614(00)00522-4.   DOI
10 Vander Wal RL, Berger GM, Hall LJ. Single-walled carbon nanotube synthesis via a multi-stage flame configuration. J Phys Chem B, 106, 3564 (2002). http://dx.doi.org/10.1021/jp012844q.   DOI
11 Merchan-Merchan W, Saveliev A, Kennedy LA, Fridman A. Formation of carbon nanotubes in counter-flow, oxy-methane diffusion flames without catalysts. Chem Phys Lett, 354, 20 (2002). http://dx.doi.org/10.1016/S0009-2614(02)00027-1.   DOI
12 Saveliev AV, Merchan-Merchan W, Kennedy LA. Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame. Combust Flame, 135, 27 (2003). http://dx.doi.org/10.1016/S0010-2180(03)00142-1.   DOI
13 Merchan-Merchan W, Saveliev AV, Kennedy LA. High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control. Carbon, 42, 599 (2004). http://dx.doi.org/10.1016/j.carbon.2003.12.086.   DOI
14 Merchan-Merchan W, Saveliev AV, Kennedy LA. Flame nanotube synthesis in moderate electric fields: from alignment and growth rate effects to structural variations and branching phenomena. Carbon, 44, 3308 (2006). http://dx.doi.org/10.1016/j.carbon.2006.06.025.   DOI
15 Hu W, Yuan L, Chen Z, Gong D, Saito K. Fabrication and characterization of vertically aligned carbon nanotubes on silicon substrates using porous alumina nanotemplates. J Nanosci Nanotechnol, 2, 203 (2002). http://dx.doi.org/10.1166/jnn.2002.104.   DOI
16 Li TX, Zhang HG, Wang FJ, Chen Z, Saito K. Synthesis of carbon nanotubes on Ni-alloy and Si-substrates using counterflow methane: air diffusion flames. Proc Combust Inst, 31, 1849 (2007). http://dx.doi.org/10.1016/j.proci.2006.07.194.   DOI
17 Yang X, Fang G, Liu N, Wang C, Zheng Q, Zhou H, Zhao D, Long H, Liu Y, Zhao X. Synthesis and field emission properties of carbon nanotubes grown in ethanol flame based on a photoresist-assisted catalyst annealing process. Appl Surf Sci, 255, 7905 (2009). http://dx.doi.org/10.1016/j.apsusc.2009.04.156.   DOI
18 Lee GW, Jurng J, Hwang J. Synthesis of carbon nanotubes on a catalytic metal substrate by using an ethylene inverse diffusion flame. Carbon, 42, 682 (2004). http://dx.doi.org/10.1016/j.carbon.2003.12.081.   DOI
19 Xu F, Liu X, Tse SD. Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane inverse diffusion flames. Carbon, 44, 570 (2006). http://dx.doi.org/10.1016/j.carbon.2005.07.043.   DOI
20 Unrau CJ, Axelbaum RL, Biswas P, Fraundorf P. Synthesis of single- walled carbon nanotubes in oxy-fuel inverse diffusion flames with online diagnostics. Proc Combust Inst, 31, 1865 (2007). http://dx.doi.org/10.1016/j.proci.2006.08.009.   DOI
21 Unrau CJ, Axelbaum RL, Lo CS. High-yield growth of carbon nanotubes on composite Fe/Si/O nanoparticle catalysts: a Car-Parrinello molecular dynamics and experimental study. J Phys Chem C, 114, 10430 (2010). http://dx.doi.org/10.1021/jp909255r.   DOI
22 Camacho J, Choudhuri AR. Effects of fuel compositions on the structure and yield of flame synthesized carbon nanotubes. Fuller Nanotube Carbon Nanostruct, 15, 99 (2007). http://dx.doi.org/10.1080/15363830601177826.   DOI
23 Hou SS, Chung DH, Lin TH. Flame synthesis of carbon nanotubes in a rotating counterflow. J Nanosci Nanotechnol, 9, 4826 (2009). http://dx.doi.org/10.1166/jnn.2009.1277.   DOI
24 Naha S, Sen S, De AK, Puri IK. A detailed model for the flame synthesis of carbon nanotubes and nanofibers. Proc Combust Inst, 31, 1821 (2007). http://dx.doi.org/10.1016/j.proci.2006.07.224.   DOI
25 Manciu FS, Camacho J, Choudhuri AR. Flame synthesis of multi-walled carbon nanotubes using $CH_4-H_2$ fuel blends. Fuller Nanotube Carbon Nanostruct, 16, 231 (2008). http://dx.doi.org/10.1080/15363830802171511.   DOI
26 Li TX, Kuwana K, Saito K, Zhang H, Chen Z. Temperature and carbon source effects on methane: air flame synthesis of CNTs. Proc Combust Inst, 32, 1855 (2009). http://dx.doi.org/10.1016/j.proci.2008.06.143.   DOI
27 Chung DH, Lin TH. Nitrogen dilution effect on flame synthesis of carbon nanostructures with acoustic modulation. J Phys Chem C, 115, 16287 (2011). http://dx.doi.org/10.1021/jp2023132.   DOI
28 Dhand V, Prasad JS, Rao MV, Mahesh KN, Anupama L, Himabindu V, Yerramilli A, Raju VS, Sukumar AA. Design and development of flame reactor for carbon nanorods (CNRs) production. Indian J Eng Mater Sci, 14, 240 (2007).
29 Rao MV, Dhand V, Prasad JS, Mahesh KN, Himabindu V, Yerramilli A, Sreedhar B. In situ lithium intercalation of carbon nanorods using flame synthesis. Compos Sci Technol, 70, 255 (2010). http://dx.doi.org/10.1016/j.compscitech.2009.10.016.   DOI   ScienceOn
30 Vander Wal RL, Hall LJ, Berger GM. Optimization of flame synthesis for carbon nanotubes using supported catalyst. J Phys Chem B, 106, 13122 (2002). http://dx.doi.org/10.1021/jp020614l.   DOI
31 Howard JB, Chowdhury KD, Vander Sande JB. Carbon shells in flames. Nature, 370, 6491 (1994). http://dx.doi.org/10.1038/370603a0.
32 Diener MD, Nichelson N, Alford JM. Synthesis of single-walled carbon nanotubes in flames. J Phys Chem B, 104, 9615 (2000). http://dx.doi.org/10.1021/jp001233f.   DOI
33 Chowdhury KD, Howard JB, Vander Sande JB. Fullerenic nanostructures in flames. J Mater Res, 11, 341 (1996). http://dx.doi.org/10.1557/JMR.1996.0040.   DOI
34 Duan HM, McKinnon JT. Nanoclusters produced in flames. J Phys Chem, 98, 12815 (1994). http://dx.doi.org/10.1021/j100100a001.   DOI
35 Adams GB, Sankey OF, Page JB, O'Keeffe M, Drabold DA. Energetics of large fullerenes: balls, tubes, and capsules. Science, 256, 1792 (1992). http://dx.doi.org/10.1126/science.256.5065.1792.   DOI
36 Vander Wal RL, Ticich TM, Curtis VE. Flame synthesis of metalcatalyzed single-wall carbon nanotubes. J Phys Chem A, 104, 7209 (2000). http://dx.doi.org/10.1021/jp994304n.   DOI
37 Vander Wal RL, Ticich TM. Comparative flame and furnace synthesis of single-walled carbon nanotubes. Chem Phys Lett, 336, 24 (2001). http://dx.doi.org/10.1016/S0009-2614(01)00114-2.   DOI
38 Vander Wal RL, Hall LJ. Ferrocene as a precursor reagent for metal- catalyzed carbon nanotubes: competing effects. Combust Flame, 130, 27 (2002). http://dx.doi.org/10.1016/S0010-2180(02)00358-9.   DOI
39 Vander Wal RL, Ticich TM. Flame and furnace synthesis of singlewalled and multi-walled carbon nanotubes and nanofibers. J Phys Chem B, 105, 10249 (2001). http://dx.doi.org/10.1021/jp012838u.
40 Vander Wal RL, Ticich TM, Curtis VE. Substrate: support interactions in metal-catalyzed carbon nanofiber growth. Carbon, 39, 2277 (2001). http://dx.doi.org/10.1016/S0008-6223(01)00047-1.   DOI
41 Gopinath P, Gore J. Chemical kinetic considerations for postflame synthesis of carbon nanotubes in premixed flames using a support catalyst. Combust Flame, 151, 542 (2007). http://dx.doi.org/10.1016/j.combustflame.2006.05.004.   DOI
42 Vander Wal RL, Hall LJ. Flame synthesis of Fe catalyzed singlewalled carbon nanotubes and Ni catalyzed nanofibers: growth mechanism and consequences. Chem Phys Lett, 349, 178 (2001). http://dx.doi.org/10.1016/S0009-2614(01)01198-8.   DOI
43 Vander Wal RL, Hall LJ, Berger GM. The chemistry of premixed flame synthesis of carbon nanotubes using supported catalysts. Proc Combust Inst, 29, 1079 (2002). http://dx.doi.org/10.1016/S1540-7489(02)80136-5.   DOI
44 Height MJ, Howard JB, Tester JW, Vander Sande JB. Flame synthesis of single-walled carbon nanotubes. Carbon, 42, 2295 (2004). http://dx.doi.org/10.1016/j.carbon.2004.05.010.   DOI
45 Height MJ, Howard JB, Tester JW, Vander Sande JB. Carbon nanotube formation and growth via particle-particle interaction. J Phys Chem B, 109, 12337 (2005). http://dx.doi.org/10.1021/jp046021n.   DOI
46 Wen JZ, Thomson MJ, Lightstone MF, Rogak SN. Detailed kinetic modeling of carbonaceous nanoparticle inception and surface growth during the pyrolysis of $C_{6}H_{6}$ behind shock waves. Energy Fuels, 20, 547 (2006). http://dx.doi.org/10.1021/ef050081q.   DOI
47 Yu XL, Yang XY, Ye P, Wang J, Yu SY. Experimental study on multi-walled carbon nanotubes synthesized by acetylene-air premixed flame. J Eng Thermophys, 30, 165 (2009).
48 Hall B, Zhuo C, Levendis YA, Richter H. Influence of the fuel structure on the flame synthesis of carbon nanomaterials. Carbon, 49, 3412 (2011). http://dx.doi.org/10.1016/j.carbon.2011.04.036.   DOI
49 Watanabe K, Araidai M, Tada K. Field emission and electronic structures of carbon allotropes. Thin Solid Films, 464-465, 354 (2004). http://dx.doi.org/10.1016/j.tsf.2004.06.048.   DOI
50 Karthik PS, Himaja AL, Singh SP. Carbon-allotropes: synthesis methods, applications and future perspectives. Carbon Lett, 15, 219 (2014). http://dx.doi.org/10.5714/CL.2014.15.4.219.   DOI
51 Lee JH, Marroquin J, Rhee KY, Park SJ, Hui D. Cryomilling application of graphene to improve material properties of graphene/chitosan nanocomposites. Composites B, 45, 682 (2013). http:// dx.doi.org/10.1016/j.compositesb.2012.05.011.   DOI
52 Yadav M, Rhee KY, Jung IH, Park SJ. Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/ graphene oxide nanocomposite film. Cellulose, 20, 687 (2013). http://dx.doi.org/10.1007/s10570-012-9855-5   DOI
53 Bae KM, Park SJ. A study on elemental mercury adsorption behaviors of nanoporous carbons with carbon dioxide activation. Carbon Lett, 15, 295 (2014). http://dx.doi.org/10.5714/CL.2014.15.4.295.   과학기술학회마을   DOI
54 Bae KM, Kim BJ, Park SJ. Overlook of carbonaceous adsorbents and processing methods for elemental mercury removal. Carbon Lett, 15, 238 (2014). http://dx.doi.org/10.5714/CL.2014.15.4.238   과학기술학회마을   DOI
55 Azeez AA, Rhee KY, Park SJ, Kim HJ, Jung DH. Application of cryomilling to enhance material properties of carbon nanotube reinforced chitosan nanocomposites. Composites B, 50, 127 (2013). http://dx.doi.org/10.1016/j.compositesb.2013.01.010.   DOI
56 Sun F, Shi C, Rhee KY, Zhao N. In-situ synthesis of CNTs in Mg powder at low temperature for fabricating reinforced Mg composites. J Alloys Compd, 551, 496 (2013). http://dx.doi.org/10.1016/j.jallcom.2012.11.053.   DOI
57 Zhao Z, Gou J, Bietto S, Ibeh C, Hui D. Fire retardency of clay/carbon nanofiber hybrid sheet in fiber reinforced polymer composites. Compos Sci Technol, 69, 2081 (2009). http://dx.doi.org/10.1016/j.compscitech.2008.11.004.   DOI
58 Dhand V, Prasad JS, Rao MV, Bharadwaj S, Anjaneyulu Y, Jain PK. Flame synthesis of carbon nano onions using liquefied petroleum gas without catalyst. Mater Sci Eng C, 33, 758 (2013). http://dx.doi.org/10.1016/j.msec.2012.10.029.   DOI   ScienceOn
59 Kim MT, Rhee KY, Lee JH, Hui D, Lau AKT. Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes. Composites B, 42, 1257 (2011). http://dx.doi.org/10.1016/j. compositesb.2011.02.005.   DOI
60 Roessler DM, Wang DSY, Kerker M. Optical absorption by randomly oriented carbon spheroids. Appl Opt, 22, 3648 (1983). http://dx.doi.org/10.1364/AO.22.003648.   DOI
61 Prato M. [60]Fullerene chemistry for materials science applications. J Mater Chem, 7, 1097 (1997). http://dx.doi.org/10.1039/A700080D.   DOI
62 Schueller OJA, Brittain ST, Whitesides GM. Fabrication of glassy carbon microstructures by soft lithography. Sens Actuators A, 72, 125 (1999). http://dx.doi.org/10.1016/S0924-4247(98)00218-0.   DOI
63 Mittal G, Dhand V, Rhee KY, Park SJ, Le WR. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem, 21, 11 (2015). http://dx.doi.org/10.1016/j.jiec.2014.03.022.   DOI
64 Ibrahim KS. Carbon nanotubes-properties and applications: a review. Carbon Lett, 14, 131 (2013). http://dx.doi.org/10.5714/CL.2013.14.3.131.   DOI
65 Kim YA, Yang KS, Muramatsu H, Hayashi T, Endo M, Terrones M, Dresselhaus MS. Double-walled carbon nanotubes: synthesis, structural characterization, and application. Carbon Lett, 15, 77 (2014). http://dx.doi.org/10.5714/CL.2014.15.2.077.   과학기술학회마을   DOI
66 Kumar M, Ando Y. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol, 10, 3739 (2010). http://dx.doi.org/10.1166/jnn.2010.2939.   DOI
67 Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R. Methods for carbon nanotubes synthesis: review. J Mater Chem, 21, 15872 (2011). http://dx.doi.org/10.1039/C1JM12254A   DOI   ScienceOn
68 Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). http://dx.doi.org/10.1038/354056a0.   DOI
69 Park YS, Moon HS, Huh M, Kim BJ, Kuk YS, Kang SJ, Lee SH, An KH. Synthesis of aligned and length-controlled carbon nanotubes by chemical vapor deposition. Carbon Lett, 14, 99 (2013). http://dx.doi.org/10.5714/CL.2013.14.2.099.   과학기술학회마을   DOI
70 Dupuis AC. The catalyst in the CCVD of carbon nanotubes: a review. Prog Mater Sci, 50, 929 (2005). http://dx.doi.org/10.1016/j.pmatsci.2005.04.003   DOI
71 Yudasaka M, Yamada R, Sensui N, Wilkins T, Ichihashi T, Iijima S. Mechanism of the effect of NiCo, Ni and Co catalysts on the yield of single-wall carbon nanotubes formed by pulsed Nd:YAG laser ablation. J Phys Chem B, 103, 6224 (1999). http://dx.doi.org/10.1021/jp9908451.   DOI
72 Sharon M, Rusop M, Soga T, Afre RA. Laser ablated carbon thin film from carbon nanotubes and their property studies. Carbon Lett, 9, 17 (2008).   DOI
73 Charcosset C, Bernard S, Fiaty K, Bechelany M, Cornu D. Membrane techniques for the preparation of nanomaterials: nanotubes, nanowires and nanoparticles: a review. Dyn Biochem Process Biotechnol Mol Biol, 1, 15 (2007).
74 Singer JM, Grumer J. Carbon formation in very rich hydrocarbonair flames: I. Studies of chemical content, temperature, ionization and particulate matter. Symp Int Combust, 7, 559 (1958). http://dx.doi.org/10.1016/S0082-0784(58)80092-2.
75 Merchan-Merchan W, Saveliev AV, Kennedy L, Jimenez WC. Combustion synthesis of carbon nanotubes and related nanostructures. Prog Energy Combust Sci, 36, 696 (2010). http://dx.doi.org/10.1016/j.pecs.2010.02.005.   DOI
76 Yuan L, Saito K, Pan C, Williams FA, Gordon AS. Nanotubes from methane flames. Chem Phys Lett, 340, 237 (2001). http://dx.doi.org/10.1016/S0009-2614(01)00435-3.   DOI
77 Woo SK, Hong YT, Kwon OC. Flame synthesis of carbon nanotubes using a double-faced wall stagnation flow burner. Carbon, 47, 912 (2009). http://dx.doi.org/10.1016/j.carbon.2008.11.052.   DOI
78 Njuguna J, Pielichowsky K. Polymer nanocomposites for aerospace application: fabrication. Adv Eng Mater, 6, 193 (2004). http://dx.doi.org/10.1002/adem.200305111.   DOI
79 Nakazawa S, Yokomori T, Mizomoto M. Flame synthesis of carbon nanotubes in a wall stagnation flow. Chem Phys Lett, 403, 158 (2005). http://dx.doi.org/10.1016/j.cplett.2004.12.091.   DOI
80 Okuno H, Issi JP, Charlier JC. Catalyst assisted synthesis of carbon nanotubes using the oxy-acetylene combustion flame method. Carbon, 43, 864 (2005). http://dx.doi.org/10.1016/j.carbon.2004.10.041.   DOI
81 Cao F, Yang H, Fu Q, Pan CX. Influence of fuels and substrates on flame synthesis of one-dimensional carbon nanomaterials. New Carbon Mater, 20, 261 (2005).
82 Arana CP, Puri IK, Sen S. Catalyst influence on the flame synthesis of aligned carbon nanotubes and nanofibers. Proc Combust Inst, 30, 2553 (2005). http://dx.doi.org/10.1016/j.proci.2004.08.077.   DOI
83 Zhang XF, Yang XY, Qi WW, Yu SY. Experimental research on synthesis of carbon nanotubes. J Eng Thermophys, 27, 357 (2006).
84 Roper FG. The prediction of laminar jet diffusion flame sizes: Part I. Theoretical model. Combust Flame, 29, 219 (1977). http://dx.doi.org/10.1016/0010-2180(77)90112-2.   DOI   ScienceOn
85 Woo SK, Hong YT, Kwon OC. Flame-synthesis limits and selfcatalytic behavior of carbon nanotubes using a double-faced wall stagnation flow burner. Combust Flame, 156, 1983 (2009). http://dx.doi.org/10.1016/j.combustflame.2009.07.003.   DOI
86 Rao CNR, Satishkumar BC, Govindaraj A, Nath M. Nanotubes. ChemPhysChem, 2, 78 (2001). http://dx.doi.org/10.1002/1439-7641(20010216)2:2<78::AID-CPHC78>3.0.CO;2-7.   DOI
87 Dhand V, Rao MV, Prasad JS, Mittal G, Rhee KY, Kim HJ, Jung DH. Carbon nanospheres synthesized via solution combustion method: their application as an anode material and catalyst for hydrogen production. Carbon Lett, 15, 198 (2014). http://dx.doi.org/10.5714/CL.2014.15.3.198.   과학기술학회마을   DOI
88 Dhand V, Prasad JS, Rao MV, Kalluri S, Jain PK, Sreedhar B. Hydrogen adsorption in flame synthesized and lithium intercalated carbon nanofibers: a comparative study. J Nanosci Nanotechnol, 15, 742 (2015). http://dx.doi.org/10.1166/jnn.2015.9168.   DOI
89 Dhand V, Prasad JS, Rhee KY, Anjaneyulu Y. Fabrication of high pressure hydrogen adsorption/desorption unit: adsorption study on flame synthesized carbon nanofibers. J Ind Eng Chem, 19, 944 (2013). http://dx.doi.org/10.1016/j.jiec.2012.11.013.   DOI
90 Burghard M, Klauk H, Kern K. Carbon-based field-effect transistors for nanoelectronics. Adv Mater, 21, 2586 (2009). http://dx.doi.org/10.1002/adma.200803582.   DOI