• Title/Summary/Keyword: carbon metabolism

Search Result 254, Processing Time 0.026 seconds

Potentiation of Carbon Tetrachloride Hepatotoxicity induced by Repeated Physical Exercise in adult Female rats (백서의 반복적인 육체운동에 의한 사염화탄소 간독성의 증폭효과)

  • Kim, Su-Nyeon;Kim, Young-Chul
    • Toxicological Research
    • /
    • v.8 no.2
    • /
    • pp.265-272
    • /
    • 1992
  • Effects of repeated physical exercise on the carbon tetrachloride ($CCl_4$) hepatotoxicity were examined in adult female rats. Rats were introduced into a cylindrical rotating cage and forced to exercise for 1 hr each day, 6days/week, for 5 consecutive weeks at a speed starting from 10m/min, increased by 1m/min per day until the speed reached 27m/min. Significantly less body weight gain was observed in the exercise group suggesting that physical fitness had been induced in these animals. Eighteen hours following termination of the last exercise bout rats were treated with $CCl_4$(2 mmol/kg.ip). The $CCl_4$-induced heptotoxicity was significantly potentiated in the repeated exercise group compared to the resting sedentary animals as determined by changes in serum sorbitol dehydrogenase (SDH), glutamic oxaloacetic transaminase(GOT), glutamic pyruvic transaminase (GPT), and glucose-6-phosphatase(G-6-Pase) activities when measured 24hrs following the $CCl_4$ treatment. Hepatic drug metabolizing activity was determined in order to elucidate the underlying mechanism of potentiating action of the $CCl_4$ hepatotoxicity induced by repeated physical exercise. Repeated exercise increased the hepatic microsomal cytochrome P-450 contents and aminopyrine N-demethylase activity. The results suggest that the potentiation of $CCl_4$ hepatotoxicity by repeated exercise is associated with induction of the mixed function oxidase (MFO) enzyme system mediating the metabolism of $CCl_4$ to its active metabolite(s).

  • PDF

Distinct Bacterial and Fungal Communities Colonizing Waste Plastic Films Buried for More Than 20 Years in Four Landfill Sites in Korea

  • Joon-hui Chung;Jehyeong Yeon;Hoon Je Seong;Si-Hyun An;Da-Yeon Kim;Younggun Yoon;Hang-Yeon Weon;Jeong Jun Kim;Jae-Hyung Ahn
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1561-1572
    • /
    • 2022
  • Plastic pollution has been recognized as a serious environmental problem, and microbial degradation of plastics is a potential, environmentally friendly solution to this. Here, we analyzed and compared microbial communities on waste plastic films (WPFs) buried for long periods at four landfill sites with those in nearby soils to identify microbes with the potential to degrade plastics. Fourier-transform infrared spectroscopy spectra of these WPFs showed that most were polyethylene and had signs of oxidation, such as carbon-carbon double bonds, carbon-oxygen single bonds, or hydrogen-oxygen single bonds, but the presence of carbonyl groups was rare. The species richness and diversity of the bacterial and fungal communities on the films were generally lower than those in nearby soils. Principal coordinate analysis of the bacterial and fungal communities showed that their overall structures were determined by their geographical locations; however, the microbial communities on the films were generally different from those in the soils. For the pulled data from the four landfill sites, the relative abundances of Bradyrhizobiaceae, Pseudarthrobacter, Myxococcales, Sphingomonas, and Spartobacteria were higher on films than in soils at the bacterial genus level. At the species level, operational taxonomic units classified as Bradyrhizobiaceae and Pseudarthrobacter in bacteria and Mortierella in fungi were enriched on the films. PICRUSt analysis showed that the predicted functions related to amino acid and carbohydrate metabolism and xenobiotic degradation were more abundant on films than in soils. These results suggest that specific microbial groups were enriched on the WPFs and may be involved in plastic degradation.

A study of the metabolites for 7-keto-DHEA-acetate in human urine (II) (뇨시료에 함유된 7-keto-DHEA-acetate의 대사체에 관한 연구 (II))

  • Kim, Yunje;Lee, Jinhee
    • Analytical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.401-409
    • /
    • 2004
  • The 7-keto-DHEA-acetate is converted to 7-keto-DHEA, a metabolite of DHEA, and similar to its metabolism. We studied the metabolite M3, M4, and M5 of 7-keto-DHEA-acetate. The estimated molecular weight of M3 and M4 was 304 which were supposed to have more 3 hydroxyl and/or ketone groups. We could know that M3 is the 7-OH-DHEA which has the hydroxyl groups on 3 and 7-carbon and a ketone group on 17-carbon. In case of M4, it is the 7-oxo-diol metabolite which has the hydroxyl groups on 3 and 17-carbon and a ketone group on 7-carbon. The M5 was supposed that the molecular weight is 320 and has the three hydroxyl groups on 3, 6, and 16 carbon and the ketone group on 17-carbon. After dosing, 7-OH-DHEA showed the maximum urine flow in human urine after 5 hr and decreased rapidly. But we could find it until 58 hr why is a higher remaining substance.

Ruminal pH pattern, fermentation characteristics and related bacteria in response to dietary live yeast (Saccharomyces cerevisiae) supplementation in beef cattle

  • Zhang, Xiangfei;Dong, Xianwen;Wanapat, Metha;Shah, Ali Mujtaba;Luo, Xiaolin;Peng, Quanhui;Kang, Kun;Hu, Rui;Guan, Jiuqiang;Wang, Zhisheng
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.184-195
    • /
    • 2022
  • Objective: In this study we aimed to evaluate the effect of dietary live yeast supplementation on ruminal pH pattern, fermentation characteristics and associated bacteria in beef cattle. Methods: This work comprised of in vitro and in vivo experiments. In vitro fermentation was conducted by incubating 0%, 0.05%, 0.075%, 0.1%, 0.125%, and 0.15% active dried yeast (Saccharomyces cerevisiae, ADY) with total mixed ration substrate to determine its dose effect. According to in vitro results, 0.1% ADY inclusion level was assigned in in vivo study for continuously monitoring ruminal fermentation characteristics and microbes. Six ruminally cannulated steers were randomly assigned to 2 treatments (Control and ADY supplementation) as two-period crossover design (30-day). Blood samples were harvested before-feeding and rumen fluid was sampled at 0, 3, 6, 9, and 12 h post-feeding on 30 d. Results: After 24 h in vitro fermentation, pH and gas production were increased at 0.1% ADY where ammonia nitrogen and microbial crude protein also displayed lowest and peak values, respectively. Acetate, butyrate and total volatile fatty acids concentrations heightened with increasing ADY doses and plateaued at high levels, while acetate to propionate ratio was decreased accordingly. In in vivo study, ruminal pH was increased with ADY supplementation that also elevated acetate and propionate. Conversely, ADY reduced lactate level by dampening Streptococcus bovis and inducing greater Selenomonas ruminantium and Megasphaera elsdenii populations involved in lactate utilization. The serum urea nitrogen decreased, whereas glucose, albumin and total protein concentrations were increased with ADY supplementation. Conclusion: The results demonstrated dietary ADY improved ruminal fermentation dose-dependently. The ruminal lactate reduction through modification of lactate metabolic bacteria could be an important reason for rumen pH stabilization induced by ADY. ADY supplementation offered a complementary probiotics strategy in improving gluconeogenesis and nitrogen metabolism of beef cattle, potentially resulted from optimized rumen pH and fermentation.

Role of Citrate Synthase in Acetate Utilization and Protection from Stress-Induced Apoptosis

  • Lee, Yong-Joo;Kang, Hong-Yong;Maeng, Pil Jae
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.39-41
    • /
    • 2008
  • The yeast Saccharomyces cerevisiae has been shown to contain three isoforms of citrate synthase (CS). The mitochondrial CS, Cit1, catalyzes the first reaction of the TCA cycle, i.e., condensation of acetyl-CoA and oxaloacetate to form citrate [1]. The peroxisomal CS, Cit2, participates in the glyoxylate cycle [2]. The third CS is a minor mitochondrial isofunctional enzyme, Cit3, and related to glycerol metabolism. However, the level of its intracellular activity is low and insufficient for metabolic needs of cells [3]. It has been reported that ${\Delta}cit1$ strain is not able to grow with acetate as a sole carbon source on either rich or minimal medium and that it shows a lag in attaining parental growth rates on nonfermentable carbon sources [2, 4, 5]. Cells of ${\Delta}cit2$, on the other hand, have similar growth phenotype as wild-type on various carbon sources. Thus, the biochemical basis of carbon metabolism in the yeast cells with deletion of CIT1 or CIT2 gene has not been clearly addressed yet. In the present study, we focused our efforts on understanding the function of Cit2 in utilizing $C_2$ carbon sources and then found that ${\Delta}cit1$ cells can grow on minimal medium containing $C_2$ carbon sources, such as acetate. We also analyzed that the characteristics of mutant strains defective in each of the genes encoding the enzymes involved in TCA and glyoxylate cycles and membrane carriers for metabolite transport. Our results suggest that citrate produced by peroxisomal CS can be utilized via glyoxylate cycle, and moreover that the glyoxylate cycle by itself functions as a fully competent metabolic pathway for acetate utilization in S. cerevisiae. We also studied the relationship between Cit1 and apoptosis in S. cerevisiae [6]. In multicellular organisms, apoptosis is a highly regulated process of cell death that allows a cell to self-degrade in order for the body to eliminate potentially threatening or undesired cells, and thus is a crucial event for common defense mechanisms and in development [7]. The process of cellular suicide is also present in unicellular organisms such as yeast Saccharomyces cerevisiae [8]. When unicellular organisms are exposed to harsh conditions, apoptosis may serve as a defense mechanism for the preservation of cell populations through the sacrifice of some members of a population to promote the survival of others [9]. Apoptosis in S. cerevisiae shows some typical features of mammalian apoptosis such as flipping of phosphatidylserine, membrane blebbing, chromatin condensation and margination, and DNA cleavage [10]. Yeast cells with ${\Delta}cit1$ deletion showed a temperature-sensitive growth phenotype, and displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e., ROS accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation, when exposed to heat stress. Upon long-term cultivation, ${\Delta}cit1$ cells showed increased potentials for both aging-induced apoptosis and adaptive regrowth. Activation of the metacaspase Yca1 was detected during heat- or aging-induced apoptosis in ${\Delta}cit1$ cells, and accordingly, deletion of YCA1 suppressed the apoptotic phenotype caused by ${\Delta}cit1$ mutation. Cells with ${\Delta}cit1$ deletion showed higher tendency toward glutathione (GSH) depletion and subsequent ROS accumulation than the wild-type, which was rescued by exogenous GSH, glutamate, or glutathione disulfide (GSSG). Beside Cit1, other enzymes of TCA cycle and glutamate dehydrogenases (GDHs) were found to be involved in stress-induced apoptosis. Deletion of the genes encoding the TCA cycle enzymes and one of the three GDHs, Gdh3, caused increased sensitivity to heat stress. These results lead us to conclude that GSH deficiency in ${\Delta}cit1$ cells is caused by an insufficient supply of glutamate necessary for biosynthesis of GSH rather than the depletion of reducing power required for reduction of GSSG to GSH.

  • PDF

Degradation of Anthracene by a Pseudomonas strain, NGK1

  • Shinde Manohar;Kim, Chi-Kyung;Tim
    • Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.73-79
    • /
    • 1999
  • Pseudomonas sp. NGK1, isolated by naphthalene enrichment culture technique, is capable of degrading anthracene as a sole source of carbon and energy. The organism degraded anthracene through the intermediate formation of 1,2-dihydroxyanthracene, 2-hydroxy-3-naphthoic acid, salicylate, and catechol. The intermediates were isolated and characterized by TLC, spectrophotometry, and HPLC analysis. The cell free extract of anthracene-grown cells showed activities of anthracene dioxygenase, 2-hydroxy-3-naphthylaldehyde dehydrogenae, 2-hydroxy-3-naphthoate hydroxylase, salicylate hydroxylase and catechol 2,3-dioxygenase. The formed catechol as a metabolite is degraded through meta-cleavage with the formation of ${\alpha}$-hydroxymuconic semi-aldehyde.

  • PDF

Metabolic Characterization of the Corynebacterium glutamicum using DNA Microarray Technology

  • Jo, Gwang-Myeong;Jang, Jae-U;Kim, Seong-Jun;Park, Yeong-Hun
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.739-740
    • /
    • 2001
  • DNA microarray with a set of 37 Corynebacterium glutamicum genes encoding enzymes for primary metabolism of glycolysis, TCA cycle and lysine biosynthesis, anaplerosis etc was constructed on slide glass in triplicate. With this DNA microarray, metabolic characteristics of the lysine-producing strain was analyzed during different phase of the cultivation. The major differences in using glucose as a carbon source instead of sucrose was found in the anaplerolytic enzymes, which control the interconversion of C3 and C4 metabolites. Also, the expression profile of these major enzymes was found to be quite distinct among different phases of growth.

  • PDF

Review on the Clinical Pharmacokinetics of Methotrexate (Methotrexate의 임상약동력학적 고찰)

  • Choi, Kyung Eob
    • Korean Journal of Clinical Pharmacy
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1991
  • Folates are involved in a variety of important biosynthesis by way of donating one carbon unit. Since folate metabolism was well understood a number of antifol have been developed. Among these antifols, aminopterin was first used in the treatment of childhood leukemia. However due to its toxicity and purity problems. it was immediately replaced by another antifols. methotrexate (MTX). MTX is shown to be active against various malignancies including leukemia breast cancer, osteogenic sarcoma, and head and neck cancer. Clinically, MTX therapy is divided into 3 categories. depeding on the dose administered; low-dose is defined as doses < $80\;mg/m^2$ intermediate-dose as doses $\geqq\;80\;mg/m^2$ and < $1000\;mg/m^2$ and high-dose as doses $\geqq\;1000\;mg/m^2$. Leucovorin should be administered to minimize MTX toxicities when MTX doses are greater than $80-100\;mg/m^2$. The clinical pharmacokinetics (ADME) of MTX is discussed in this text.

  • PDF

Metabolism of Very Long-Chain Fatty Acids: Genes and Pathophysiology

  • Sassa, Takayuki;Kihara, Akio
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.83-92
    • /
    • 2014
  • Fatty acids (FAs) are highly diverse in terms of carbon (C) chain-length and number of double bonds. FAs with C>20 are called very long-chain fatty acids (VLCFAs). VLCFAs are found not only as constituents of cellular lipids such as sphingolipids and glycerophospholipids but also as precursors of lipid mediators. Our understanding on the function of VLCFAs is growing in parallel with the identification of enzymes involved in VLCFA synthesis or degradation. A variety of inherited diseases, such as ichthyosis, macular degeneration, myopathy, mental retardation, and demyelination, are caused by mutations in the genes encoding VLCFA metabolizing enzymes. In this review, we describe mammalian VLCFAs by highlighting their tissue distribution and metabolic pathways, and we discuss responsible genes and enzymes with reference to their roles in pathophysiology.