뇨시료에 함유된 7-keto-DHEA-acetate의 대사체에 관한 연구 (II)

김연제^{*} · 이진희

한국과학기술연구원 도핑콘트롤센터 (2004. 8. 16 접수, 2004. 9. 9 승인)

A study of the metabolites for 7-keto-DHEA-acetate in human urine (II)

Yunje Kim^{*} and Jinhee Lee

Doping Control Center, Korea Institute of Science and Technology, P.O. box 131, Cheongryang, Seoul, Korea (Received Aug. 16, 2004, Accepted Sep. 9, 2004)

요 약: 7-keto-DHEA-acetate는 DHEA의 대사체인 7-keto-DHEA로 변하고 체내에서 대사되는 과 정이 서로 유사하였으며 복용 후 검출된 대사체 M3, M4 및 M5에 대해 살펴보았다. 대사체 M3 과 M4는 분자량이 304이며 물분자가 제거될 수 있는 히드록시기나 케톤기를 세 개 이상 가진 구조로 예상되었으며, M3의 경우 3번과 7번 탄소위치에 히드록시기가 있고 17번 탄소위치에 케 톤기를 가지는 7-OH-DHEA이라는 것을 알 수 있었다. 대사체 M4는 3번과 17번 탄소위치에 히 드록시기가 있고, 7번 탄소위치에 케톤기가 있는 구조인 7-oxo- diol 이었다. 대사체 M5는 분자 량이 320이며 M3 및 M4와는 달리 물분자가 제거될 수 있는 히드록시기나 케톤기를 네 개 이상 가진 구조일 것이라고 예상되었으며, 3번과 7번 그리고 16번 탄소위치에 히드록시기가, 그리고 17번 탄소위치에 케톤기가 있을 것으로 예상되었다. 7-keto-DHEA-acetate 복용 후 최대 배설량을 보인 대사체는 7-OH-DHEA 이었으며, 복용 5시간 후 최대의 배설량을 보인 이후 급격히 감소하 였으며 매우 빠른 속도로 체외로 배설되기도 하지만 복용 58시간 후의 뇨 시료에서도 검출되기 때문에 체내 잔류성이 높은 약물임을 알 수 있었다.

Abstract : The 7-keto-DHEA-acetate is converted to 7-keto-DHEA, a metabolite of DHEA, and similar to its metabolism. We studied the metabolite M3, M4, and M5 of 7-keto-DHEA-acetate. The estimated molecular weight of M3 and M4 was 304 which were supposed to have more 3 hydroxyl and/or ketone groups. We could know that M3 is the 7-OH-DHEA which has the hydroxyl groups on 3 and 7-carbon and a ketone group on 17-carbon. In case of M4, it is the 7-oxo- diol metabolite which has the hydroxyl groups on 3 and 17-carbon and a ketone group on 7-carbon. The M5 was supposed that the molecular weight is 320 and has the three hydroxyl groups on 3, 6, and 16 carbon and the ketone group on

 \star Corresponding author

Phone : +82+(0)2-958-5060 Fax : +82+(0)2-958-5059 E-mail : yjkim@kist.re.kr

- 401 -

402

17-carbon. After dosing, 7-OH-DHEA showed the maximum urine flow in human urine after 5 hr and decreased rapidly. But we could find it until 58 hr why is a higher remaining substance.

Key words : 7-keto-dehydroepiandrosterone-acetate, dosed human urine, metabolite M3, metabolite M4, metabolite M5, LC/ESI/MS, GC/MS

1. 서 론

본 논문은 지난 호에 발표한 뇨시료에 함유된 7-keto-DHEA-acetate의 대사체에 관한 연구(I)에 연속하여 발 표하지 못한 부분을 게재하는 것이다. 지난 호에서 언 급한 바와 같이 예상대로 7-keto-DHEA-acetate는 DHEA 의 대사체인 7-keto-DHEA로 변하고 체내에서 대사되는 과정이 서로 유사하였다. 생체에 투여된 약물은 흡수 과정을 거쳐 전신순환계에 도달하여 각 조직에 분포한 후 여러 가지 경로를 통하여 체내에서 소실 또는 체외 로 배설된다. 즉, 효소 작용에 의해 약물의 화학구조가 변화하는 '대사 (metabolism)' 과정과 체외로 나가는 '배 설 (excretion)' 과정을 통하여 소실된다. 일부 약물들은 체내에서 변화를 일으키지 않은 상태로 배설되는 경우 도 있지만, 대개는 효소반응 등으로 보다 더 배설되기 쉬운 물리화학적 특성을 띤 구조로 변환된 다음 배설된 다. 또한 약물은 대사과정에서 대개 수용성이 증가하고 약리 활성이 약해지거나 소실된다. 그러나 약물에 따라 서는 대사체가 여전히 활성을 띠고 있거나, 오히려 강 해지는 경우도 있다. 약물대사반응을 크게 나누면 phase I 반응과 phase Ⅱ 반응으로 나눌 수 있다. phase I 반응은 산화, 환원, 가수분해, 이성질화 등의 반응으 로부터 약물에 극성이 높은 기능기가 치환된다. 한편 phase II 반응은 포함 (conjugation)반응으로서 약물에 결합된 극성작용기 또는 phase I의 반응으로 도입된 극 성기에 글루쿠론산, 황산, 아미노산등과 같은 수용성 분 자단이 결합하여 약물을 보다 배설되기 쉬운 형태로 변 화시키는 반응이다.1-2

대사체들을 분리하고 구조를 규명하기 위해서는 여러 가지 분리 및 분광법이 이용되었지만 최근에는 기체크로 마토그래프 (GC) 및 액체크로마토그래프 (HPLC) 등의 분리기기와 연결된 gas chromatography/mass spectrometry (GC/MS)법이나 liquid chromatography/mass spectrometry (LC/MS)법 등을 주로 이용하고 있다.³⁵ 이들 두 방법은 각각 장단점을 가지고 있으나 그중에서 LC/MS법은 GC/MS법과 달리 극성이 크며 휘발성이 낮은 화합물을 분리하기 위하여 극성을 감소시키기 위한 유도체화 반응 과 같은 전처리 과정을 거치지 않고도 분석할 수 있다는 장점이 있다.⁵ 일반적으로 대사체는 모 화합물보다 극성 이 크며 수용성의 화합물로 변화되어 체외로 배설이 된 다. 따라서 LC/MS법이 유도체화 과정이 필요 없는 보다 간편하고 유용한 방법이 되고 있다.

본 연구의 목적은 7-keto-DHEA-acetate를 복용한 후 사람의 뇨를 통해서 배설되는 대사체들을 검출하고 그 대사과정을 예측하는데 목적이 있다. 지난 호에 이어 추 가로 연구된 3가지 대사체에 대해 설명하고 7-OH-DHEA 의 배설 양상을 보고하고자 한다.

2.실 험

2.1. 측정기기 및 실험기구

본 연구에서는 시료분석을 위해 시료 자동주입기 (HP 1100 Series G1313A Autosampler)가 장착된 Hewlett Packard사의 HP 1100 Series HPLC를 사용했으며 HPLC 에서 분리된 각 물질들의 분자량 확인과 구조 예측을 위 해 Agilent (Palo Alto, CA, USA)사의 mass spectrometer 가 장착된 LC/MSD Trap을 사용하였다. 이 때 사용된 이 온화 법은 ESI/Positive mode이었다. Column은 Agilent사 Hypersil-ODS C18 column (4.6 mm I.D × 100 mm Length, particle size 5 cm)을 사용하였다.

예측한 대사체들을 재확인하기 위해 Hewlett Packard 사의 6890 기체 크로마토그래프에 5973 질량선택성검 출기를 직접 연결한 GC/MSD를 사용하였다. 시료는 HP 7683 자동시료주입기 및 운반가스 자동 제어기를 사용 하여 주입하였다.

진탕 추출을 위해서 Edmund Bűchler 사의 7400 Rubigen shaker, 원심분리기는 Varifuge-F Haeraus를 사용 하였고 시료 혼합을 위해서는 Thermolyne 사의 vortex mixer를, 시료농축을 위해서는 Thermolyne 사의 16500 dry bath와 Zymark (Hopkinton, MA, USA) 사의 Turbovap[®] LV evaporator, Búchi Rotavapor R-200 진공증발기를 사 용하였다. 유도체화 반응의 온도조절을 위해서 Liebisch Labortechnik의 Heating block을 사용하였고, 유기층 수거 를 위해 사용한 Freezer는 LAUDA사 ecoline RE 112였다.

2.2. 시약 및 시료

2.2.1. 시 약

본 연구에 사용된 합성 동화성 스테로이드인 7-keto-DHEA-acetate는 경구투여용으로 Vitamin World, Inc. (Ronkonkoma, NY 11779, U. S. A)사제이며 내부표준물 질인 methyltestosterone은 Sigma 사제로서 내부표준물질 10 mg을 메탄올에 녹여 20 µg/mL 표준용액으로 만들어 사용하였다. 시료 전처리에 사용한 Serdolite[®] PAD-I resin (100~200 µm)은 독일 Serva사제로서, 아세톤 및 메 탄올로 씻은 후 증류수로 침강시키는 방법으로 활성화시 켜 사용하였다. 그리고 ß-glucronidase/arylsulphatase는 *Helix Pomatia*에서 추출한 것으로 독일 Bőehringer Mannheim 사제이다. 완충용액 제조에 사용된 KH₂PO₄ 와 K₂HPO₄는 Aldrich사제 특급시약으로, 이들 용액을 pH 7.0이 되도록 만들고 완충용액으로 사용하였다.

한편 HPLC에서 이동상으로 사용된 acetonitrile은 HPLC등급으로 Baker 사제를 사용하였다. 또한 HPLC 이동상인 아세토니트릴과 3차 증류수는 각각 pore size 0.5 µm 와 0.45 µm의 Millipore사제 membrane filter로 여과한 후 20분간 탈기시켜 사용하였다.

N-methyl-N-(trimethyl-N-methyl-N-(trimethylsilyl)trifluor

o-acetamide(MSTFA)와 ammonium iodide 및 dithioerythriol (DTE)은 Sigma 사제로서 500:4:2 (w/w/w)의 비율 로 혼합하여 유도체화 시약으로 사용하였다.

2.2.2 뇨시료의 채취

실험에 사용한 뇨 시료는 건강한 성인여자 (나이: 23 세, 체중:45 kg)에게Vitamin World에서 판매하는 7-keto-DHEA-acetate 2정 (25 mg/tablet)을 일회 복용시킨 후 5시 간부터 58시간까지의 소변을 채취하였다. 채취된 뇨 시 료는 실험에 사용되기 전까지 2-3 ℃의 냉장상태로 보관 하였다.

2.3. 실험 방법

2.3.1. 뇨 시료 전처리

PAD-I Resin을 지름 0.5 cm 의 disposable pasteur pipet에 약 3 cm 정도 채운 후 3 mL의 증류수로 충분 히 세척하여 활성화 시켰다. 뇨 시료를 2500 rpm에서 5 분간 원심분리 시킨 후, 활성화된 PAD-I 이 충전된 컬 럼에 1 mL 씩 5회에 걸쳐 용리시킨 다음 내부 표준물 질인 methyltestosterone 10 µg/mL 용액을 20 µL 첨가하 였다. 흡착된 컬럼에 같은 량의 증류수로 용리시킨 후, 메탄올 1 mL로 5회에 걸쳐 추출하였다. 추출된 메탄을 을 회전 진공 중발기로 증발시킨 후, 그 잔류물에 0.2 M acetate buffer (pH 4.2) 2 mL 과 *Helix Pomatia*에서 추출한 ß-glucuronidase/arylsulphatase 50 µL을 넣고 55 ℃에서 3시간동안 가수분해 시켰다. 가수분해 후 잔류 물을 함유한 시험관을 실온에서 냉각시키고 potassium

Table 1. LC/ESI/MS operating conditions for 7-keto-DHEA-acetate and its metabolites in human urine

Instrument: Agilent 1100 series LC/ESI/MS system Column: Hypersil ODS 4.6 mm I.D x 100 mm length, particle size 5 µm Flow rate: 0.6 ml/min Mobile phase: time acetonitrile water initial 80% 20% 45% 25min 55% Injection volume: 10 µL Ionization mode : ESI (electrospray ionization) Ion mode: positive mode Drying gas: N₂ Drying gas temp. : 350 °C Drying gas flow: 10 L/min Nebulizer pressure : 40 psi Capillary exit voltage: 80 eV

carbonate 약 200 mg을 가하여 pH를 8-9로 조절한 뒤, 수분이 제거된 distilled diethyl ether 5 mL을 가한 다음 shaker를 사용하여 10분간 진탕시켜 추출하였다. 이 혼 합용액을 2500 rpm에서 5분간 원심분리하고 -30 ℃의 냉동기에서 buffer층만 얼게 하였다. 얼지 않은 ether층 을 다른 시험관으로 옮기고 질소 가스로 완전히 증발시 켜 건조한 추출물을 얻었다.

2.3.2. LC/ESI/MS를 이용한 대사체 분석

7-keto-DHEA-acetate를 복용하기 전에 채취한 뇨 시 료와 약을 복용하고 5시간 후에 채취한 뇨 시료로부터 추출한 잔류물에 각각 200 μL의 메탄올을 가한 다음 자동 시료 주입기로 LC/ESI/MS에 10 μL씩 주입시켰다. 기울기 용리법으로 LC/ESI/MS 크로마토그램과 질량스 펙트럼을 작성하였으며 이 때 사용된 LC/ESI/MS와 LC/ESI/MS/MS의 측정 조건은 Table 1에 수록하였다.

Table 2. GC/MSD operating conditions for the derivatives of 7-keto-DHEA-acetate and its metabolites in human urine

GC/MS:	Agilent	6890	GC	1	5973	MSD

- · Column: Ultra-1 (cross-linked methylsilicon 17 m X 0.2 mm I.D X 0.33 μ m film thickness)
- · Carrier gas : He at 0.6 mL/min
- · Inlet pressure : 16.10 psi
- · Split ratio : 5:1
- Injection port temp. : 280 $^{\circ}$ C
- \cdot Transfer line temp. : 300 $^\circ C$
- · Oven temp. program :

initial temp.	initial time	rate	final temp	final time
(°C)	(min)	(°C/min)	(°C)	(min)
120	0	70.0	180	0.86
		4	235	13.75
		30	300	2.17

2.3.3 GC/MSD를 이용한 대사체 분석

GC/MSD 분석을 위하여 7-keto-DHEA-acetate를 복용 하기 전에 채취한 뇨 시료와 복용 후 0-5시간 동안 채 취한 뇨 시료로부터 추출한 성분들을 실릴화 유도체 시 키기 위해 MSTFA/NH4I/DTE (500:4:2, w/w/w)혼합물질 50 µL을 가하여 60 ℃에서 15분 동안 유도체화 시켜 GC/MSD에 2 µL을 주입하였다. 이 때 사용된 GC/MSD 의 분석조건은 Table 2와 같다.

3. 결과 및 고찰

3.1 LC/ESI/MS에 의한 뇨 시료 중 대사체 M3, M4 및 M5의 검출

Fig. 1은 모 화합물과 각 대사체들의 LC/ESI/MS 크 로마토그램이다. 지난 호에 이미 설명한 바와 같이 모 화합물은 뇨시료로부터 검출되지 않았지만 표준물질은 19.5 min에서 검출되었다. 그러나 Fig. 1에서 보는 바와 같이 대사체로 예상되는 5종의 화합물이 표준물질의 용 리시간보다 앞선 머무름 시간에서 검출되었으며 지난 호에 발표한 M1 및 M2 외에 M3, M4 및 M5가 검출되 었다.

Fig. 1. Total ion chromatogram and extracted ion chromatograms of m/z 303, m/z 305, and m/z 321 by LC/ESI/MS.

3.1.1. 대사체 M3

 Fig. 2 (a)에 나타낸 대사체 M3의 extracted ion

 chromatogram (EIC)을 보면 대사체 M3의 머무름 시간

 은 7.0 min 이었으며 질량 스펙트럼 Fig. 2 (b)을 보면

 m/z 305의 질량이온이 검출되었다. 이것은 대사체 M3

 의 어미분자에 H⁺ 가 첨가되어 생성된 [M+H]⁺ 이온으

 로 대사체 M3의 분자량을 304로 추정할 수 있다. Fig.

 2 (c)는 질량 스펙트럼에서 가장 크게 검출된 m/z 305

 를 어미이온으로 하여 다시 한번 토막화 시켜 검출한

 MS/MS 질량 스펙트럼이다. 질량 스펙트럼에서 보는 바

 와 같이 m/z 287, 269, 251의 새로운 피크가 검출되었

 으며 m/z 287 이온은 [M+H]⁺이온으로부터 한 개의

 H₂O가 떨어진 [MH-H₂O]⁺ 이온으로, m/z 269 이온은

Fig. 2. LC/ESI/MS extracted ion chromatogram of metabolite M3 (a), MS spectrum of metabolite M3 (b), and MS/MS spectrum of m/z 305 (c).

[M+H]⁺이온으로부터 두 개의 H₂O가 떨어진 토막이온 으로, 그리고 m/z 251이온은 [M+H]⁺이온으로부터 세 개의 H₂O가 떨어진 토막이온으로 예측된다. 따라서 대 사체 M3은 물분자가 제거될 수 있는 히드록시기나 케 톤기를 세 개 이상 가진 구조일 것이라고 예상되었다.

3.1.2. 대사체 M4

 Fig. 3 (a)에 나타낸 대사체 M4의 EIC를 보면 대사

 체 M4의 머무름 시간은 7.7 min 이었으며 질량 스펙트

 럼 Fig. 3 (b)을 보면 m/z 305의 질량이온이 검출되었

 다. 이것은 대사체 M4의 어미분자에 H^{*} 가 첨가된

 [M+H]^{*} 이온으로 대사체 M3의 분자량을 304로 추정할

수 있다. Fig. 3 (c)은 질량 스펙트럼에서 가장 크게 검 출된 m/z 305를 어미이온으로 하여 다시 한번 토막화 시켜 검출한 MS/MS 질량 스펙트럼이다. 질량 스펙트럼 에서 보는 바와 같이 m/z 287, 269, 251의 새로운 피크 가 검출되었으며 m/z 287 이온은 [M+H]⁺이온으로부터 한 개의 H₂O가 떨어진 [MH-H₂O]⁺ 이온으로, m/z 269 이온은 [M+H]⁺이온으로부터 두 개의 H₂O가 떨어진 토 막이온으로, 그리고 m/z 251이온은 [M+H]⁺이온으로부 터 세 개의 H₂O가 떨어진 토막이온으로 예측된다. 따 라서 대사체 M3와 마찬가지로 물분자가 제거될 수 있 는 히드록시기나 케톤기를 세 개 이상 가진 구조이며 M3와 이성질체일 것으로 예상되었다.

Fig. 3. LC/ESI/MS extracted ion chromatogram of metabolite M4 (a), MS spectrum of metabolite M4 (b), and MS/MS spectrum of m/z 305 (c).

Fig. 4. LC/ESI/MS extracted ion chromatogram of metabolite M5 (a), MS spectrum of metabolite M5 (b), and MS/MS spectrum of m/z 321 (c).

3.1.3. 대사체 M5

Fig. 4 (a)에 나타낸 대사체 M5의 EIC를 보면 대사체 M5의 머무름 시간 5.3 min 이었으며 질량 스펙트럼 Fig. 4 (b)를 보면 m/z 321의 질량이온이 검출되었다. 이 것은 대사체 M5의 어미분자에 H⁺ 가 첨가되어 생성된 [M+H]⁺ 이온으로 대사체 M5의 분자량을 320으로 추정 할 수 있다. *Fig.* 4 (c)는 질량 스펙트럼에서 가장 크게 검출된 m/z 321을 어미이온으로 하여 다시 한번 토막화 시켜 검출한 MS/MS 질량스펙트럼이다. 질량 스펙트럼 에서 보는 바와 같이 m/z 303, 285, 267의 새로운 피크 가 검출되었으며 m/z 303 이온은 [M+H]⁺이온으로부터 한 개의 H₂O가 떨어진 [MH-H₂O]⁺이온으로, m/z 285는 이온은 [M+H]⁺이온으로부터 두 개의 H₂O가 떨어진 토 막이온으로, m/z 267이온은 [M+H]⁺이온으로부터 세 개 의 H₂O가 떨어진 토막이온으로, 그리고 m/z 249이온은 [M+H]⁺이온으로부터 네 개의 H₂O가 떨어진 토막이온으 로 예측된다. 따라서 대사체 M5는 M3 및 M4와는 달리 물분자가 제거될 수 있는 히드록시기나 케톤기를 네 개 이상 가진 구조일 것이라고 예상되었다.

3.2. GC/MS를 이용한 뇨 시료 중 대사체 M3, M4 및 M5의 검출

3.2.1. 대사체 M3과 M4

대사체 M3과 M4는 LC/ESI/MS와 LC/ESI/MS/MS의 결과로부터 분자량은 304이고 분자 내에 3개의 케톤기이 나 히드록시기를 가질 것으로 예상하였다. 따라서 실릴 유도체화에 의한 대사체 M3과 M4의 분자이온은 3개의 [MH-H_O]+ triemethylsilyl (TMS)기가 치환되면 분자량보다 216이 증 가한 TMS-enol-ether 유도체를 생성할 것으로 예상된다. 그러므로 대사체 M3과 M4의 분자량 302에 216을 더한 m/z 520 값을 가지는 분자이온의 질량 스펙트럼을 얻어 대사체 M3과 M4의 검출을 시도하였다. Fig. 5 는 GC/MSD를 이용하여 얻은 total ion chromatogram (TIC) 과 EIC 그리고 질량스펙트럼이다. Fig. 5 (b)의 m/z 520 이온 EIC에서 대사체 M3과 M4로 예측되는 질량 스펙트 럼을 가진 피크는 머무름 시간 11.792 min과 11.860 min 에서 검출되었으며 다른 피크들은 본 연구와는 관계없는 불순물로 검출되었다. 머무름 시간 11.792 min의 질량 스 페트럼을 Fig. 5 (c)에 도시하였으며 아울러 Fig. 5 (d)에 서는 11.860 min의 질량 스펙트럼을 나타내었다.

> 먼저 Fig. 5 (c)의 질량스펙트럼을 보면 m/z 520의 분자이온이 검출 되었으며 m/z 505 이온은 분자이온으 로부터 한 개의 메틸기가 떨어진 토막이온[M-CH₃]+ 이 온이다. 또한 m/z 415 이온은 분자이온으로부터 메틸기 와 -TMSOH가 떨어진 [M-CH₃-TMSOH]⁺ 이온, 그리고

Fig. 5. Total ion chromatogram (a), extracted ion chromatogram (b), MS spectrum of 7-OH-DHEA (c) and MS spectrum of 7-oxo-diol (d) of dosed urine by GC/MS.

m/z 325 이온은 분자이온으로부터 메틸기와 두개 -TM

SOH 가 떨어져 나간 것으로써 이들 이온들은 TMS 유 도체에서 흔히 나타나는 토막이온들 이다. m/z 129 이 온은 A-ring이 깨지면서 나타나는 이온으로 3번 탄소위 치에 히드록시기가 있다는 것을 그리고 m/z 169 이온 은 C-ring이 깨지면서 나타나는 피크로 17번 탄소 위치 에 케톤기가 있다는 것을 예상할 수 있게 한다. 따라서 Fig. 5 (c)에 나타낸 m/z 520 이온이 분자이온인 대사체 M3은 분자량이 304이고 3번과 7번 탄소위치에 히드록 시기가 있고 17번 탄소 위치에 케톤기를 가지는 7-OH-DHEA이라는 것을 확인 할 수 있었다.⁶

다음 머무름 시간 11.860 min의 질량스펙트럼인 Fig. 5 (d)를 보면 Fig. 5 (c)의 질량 스펙트럼에서 마찬가지 로 m/z 520의 분자이온이 검출 되었으며, m/z 430 이온 은 분자이온으로부터 -TMSOH가 떨어진 이온이다. m/z 129 이온은 A-ring이 깨지면서 나타나는 이온으로 대사체 M3과 마찬가지로 3번 탄소위치에 히드록시기가 있고, 17번 탄소 위치에 히드록시기가 있다는 것을 보여주며 아울러 m/z 325이온도 이것을 뒷받침한다. 따라서 Fig. 5 (d)에 나타낸 m/z 520을 분자이온으로 가지고, 분자 량이 304인 대사체 M4는 3번 과 17번 탄소 위치에 히 드록시기를 가지며 7번 탄소위치에 케톤기가 있는 7-oxo-diol이라는 것을 확인 할 수 있었다.⁶

3.2.1. 대사체 M3과 M5

대사체 M5는 LC/ESI/MS와 LC/ESI/MS/MS의 결과로 부터 분자량 320과 4개의 케톤기이나 히드록시기를 가 지는 것으로 예측되었다. 따라서 실릴 유도체화를 하면 대사체 M5는 분자량보다 288이 증가된 TMS-enol-ether 유도체를 생성할 것이므로 분자량인 320에 288을 더한 m/z 608 값을 가지는 분자이온의 질량 스펙트럼으로부 터 대사체 M5의 분석을 시도하였다. Fig. 6은 GC/MSD 를 이용하여 얻은 TIC와 EIC 그리고 질량스펙트럼이다. Fig. 6 (b)은 m/z 608의 EIC이며 머무름 시간 12.796 min에서 대사체로 예상되는 질량 스펙트럼을 얻을 수 있었으며 이것을 Fig. 6 (c)에 나타내었다. 질량스펙트 럼에서 m/z 608 의 분자이온이 검출되고 m/z 593 이온 은 분자이온으로부터 메틸기가 떨어진 [M-CH₃]⁺ 이온 으로 보인다. 또한 m/z 518 이온은 분자이온으로부터 메틸기와 -TMSOH가 떨어진 [M-CH₃, -TMSOH]⁺ 이온 으로 TMS 유도체에서 나타나는 일반적인 토막이온이 다. 다른 대사체들의 토막이온생성과는 달리 대사체

407

M5는 C-ring이 깨지면서 m/z 325와 m/z 283 이온을 생 성하였다. m/z 325 이온으로부터 3번과 7번 탄소위치에 히드록시기가 있으며 m/z 283으로부터는 17번 탄소위 치에 케톤기가 그리고 16번 탄소위치에 히드록시기가 있을 것으로 예상되었다. 대사체 M5는 쥐 실험으로부 터도 아직까지 보고 된 바 없으며 DHEA 대사체 연구 에서도 논의된 바 없는 새로운 대사체이다.

(a) TIC

TIC: KETO2.D

5000000 1000000 0 Time--> 800 1000 1200 1400 1600 1800 4.00 6 00 (b) EIC of new metabolite Abundance Ion 608.00 (607.70 to 608.70): KETO2.D 50000 10000 4.00 Time--> 6.00 8.00 10.00 12.00 14.00 16.00 18.00 (c) MS spectrum new metabolite Scan 1431 (12.796 min): KETO2.D Abundance 300000 325 ▶ 283 325 200000 518 [M+-CH3-TMSOH] 100000 593 [M+-CH3] 147 103 i 608 [M+] 489 m/z-->⁰ 50 100 150 200 250 300 350 400 450 500 550 600

Fig. 6. Total ion chromatogram (a), extracted ion chromatogram (b), and MS spectrum of new metabolite (c) by GC/MS.

3.3. 7-OH-DHEA의 배설 양상

7-keto-DHEA-acetate 복용 후 검출된 대사체 7-keto-

DHEA, 7-oxo- diol, 7-OH -DHEA 및 대사체 M5 중 약을 복용하고 5시간 후에 얻은 뇨 내에서 최대 배설량을 보 인 대사체는 7-OH-DHEA 이었으며 GC/MSD를 이용하여 이 대사체의 배설양상을 조사하였다. 이 대사체의 표준 물질을 구할 수 없었기 때문에 배설량에 관한 연구는 수 행할 수 없었으며 다만 대사체와 내부표준물질의 봉우리 넓이 비를 경과 시간에 대해 도시하여 배설양상을 대략 적으로 파악하였다. 이에 대한 결과는 Fig. 7에 나타내었 으며 그림에서 보는 바와 같이 뇨 내의 7-OH-DHEA는 복용 후 5시간 후 최대의 배설량을 보였으며, 5시간 이후 급격히 감소하였다. 또한 23시간이 지난 후에도 비록 매 우 적은 양이지만 7-OH-DHEA를 검출 할 수 있어 체내 잔류기간이 길다는 것을 알 수 있었다. 따라서 이 약물은 매우 빠른 속도로 체외로 배설되기도 하지만 복용 후 58 시간 후의 뇨 시료에서도 검출되었기 때문에 체내 잔류 성이 높은 약물임을 알 수 있었다.

Fig. 7 Excretion profile of 7-OH-DHEA.

4. 결 론

7-keto-DHEA-acetate는 DHEA의 대사체인 7-keto-DHEA 로 변하고 체내에서 대사되는 과정이 서로 유사하였으며 복용 후 검출된 대사체 M3, M4 및 M5에 대해 살펴보았 다. 대사체 M3과 M4의 경우 LC/ESI/MS의 결과로부터 분 자량이 304이며 물분자가 제거될 수 있는 히드록시기나 케톤기를 세 개 이상 가진 구조일 것이라고 예상되었다. 한편 GC/MS의 결과로부터 대사체 M3은 분자량이 304이 고 3번 과 17번 탄소위치에 히드록시기가 있고 17번 탄소 위치에 케톤기를 가지는 7-OH-DHEA이라는 것을 알 수 있었으며, 대사체 M4는 3번과 17번 탄소 위치에 히드록 시기를 가지며 7번 탄소위치에 케톤기가 있는 7-oxo-diol

Abundance

1.05e+07

이라는 것을 알 수 있었다. 대사체 M5는 분자량이 320이 며 M3 과 M4와는 달리 물분자가 제거될 수 있는 히드록 시기나 케톤기를 네 개 이상 가진 구조일 것으로 예상되 었다. GC/MS 결과로부터 3번, 7번, 그리고 16번 탄소위치 에 히드록시기가 있으며, 17번 탄소위치에 케톤기가 있을 것으로 예상되었다. 7-keto-DHEA-acetate 복용 후 최대 배 설량을 보인 대사체는 7-OH-DHEA 이었으며, 복용 5시간 후 최대의 배설량을 보인 이후 급격히 감소하였다. 또한 이 약물은 매우 빠른 속도로 체외로 배설되기도 하지만 복용 58시간 후의 뇨 시료에서도 검출되었기 때문에 체내 잔류성이 높은 약물임을 알 수 있었다.

참고 문헌

- Introduction to drug metabolism, 2nd edition, G. Gordon Gibson, Ch1, 1999
- 2. 생물약제학, 심창구, 서울대학교 출판부, 1999
- Kenneth L, busch, Gary L. Glish, Scott A. McLuckey, Mass spectrometry/Mass spectrometry, 1998
- 4. Raymond E. March, John F. J. Todd, *Practical aspect* of ion trap mass spectrometry, 1995.
- 5. Douglas A. S., *Principles of instrumental* analysis, 5th edition, 1998.
- W. Schancher, M Donike, Anal. Chim. Acta., 23, 275, 1993.