Ruminal pH pattern, fermentation characteristics and related bacteria in response to dietary live yeast (Saccharomyces cerevisiae) supplementation in beef cattle |
Zhang, Xiangfei
(Low Carbon Breeding Cattle and Safety Production-University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University)
Dong, Xianwen (Chongqing Academy of Animal Science) Wanapat, Metha (Tropical Feed Resources Research and Development Center, Department of Animal Science, Faculty of Agriculture, Khon Kaen University) Shah, Ali Mujtaba (Low Carbon Breeding Cattle and Safety Production-University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University) Luo, Xiaolin (Institute of Plateau Animals, Sichuan Academy of Grassland Science) Peng, Quanhui (Low Carbon Breeding Cattle and Safety Production-University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University) Kang, Kun (Low Carbon Breeding Cattle and Safety Production-University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University) Hu, Rui (Low Carbon Breeding Cattle and Safety Production-University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University) Guan, Jiuqiang (Institute of Plateau Animals, Sichuan Academy of Grassland Science) Wang, Zhisheng (Low Carbon Breeding Cattle and Safety Production-University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University) |
1 | Stella AV, Paratte R, Valnegri L, et al. Effect of administration of live Saccharomyces cerevisiae on milk production, milk composition, blood metabolites, and faecal flora in early lactating dairy goats. Small Rumin Res 2007;67:7-13. https://doi.org/10.1016/j.smallrumres.2005.08.024 DOI |
2 | Jiao P, He Z, Ding S, et al. Impact of strain and dose of live yeast and yeast derivatives on in vitro ruminal fermentation of a high-grain diet at two pH levels. Can J Anim Sci 2018;98:477-87. https://doi.org/10.1139/cjas-2017-0079 DOI |
3 | Rossi F, Luccia AD, Vincenti D, Cocconcelli PS. Effects of peptidic fractions from Saccharomyces cerevisiae culture on growth and metabolism of the ruminal bacteria Megasphaera elsdenii. Anim Res 2004;53:177-86. https://doi.org/10.1051/animres:2004009 DOI |
4 | Broderick GA. Effects of varying dietary protein and energy levels on the production of lactating dairy cows. J Dairy Sci 2003;86:1370-81. https://doi.org/10.3168/jds.S0022-0302(03)73721-7 DOI |
5 | Zhang X, Zhang H, Wang Z, et al. Effects of dietary carbohydrate composition on rumen fermentation characteristics and microbial population in vitro. Ital J Anim Sci 2015;14:3366. https://doi.org/10.4081/ijas.2015.3366 DOI |
6 | Wanapat M, Gunun P, Anantasook N, Kang S. Changes of rumen pH, fermentation and microbial population as influenced by different ratios of roughage (rice straw) to concentrate in dairy steers. J Agric Sci 2014;152:675-85. https://doi.org/10.1017/S0021859613000658 DOI |
7 | Russell JB, Rychlik JL. Factors that alter rumen microbial ecology. Science 2001;292:1119-22. https://doi.org/10.1126/science.1058830 DOI |
8 | Penner GB. Short chain fatty acid absorption and regulation of ruminal pH. Florida Ruminant Nutrition Conference 2019; Gainesville, FL, USA: University of Florida; 2019. |
9 | Wang H, Pan X, Wang C, Wang M, Yu L. Effects of different dietary concentrate to forage ratio and thiamine supplementation on the rumen fermentation and ruminal bacterial community in dairy cows. Anim Prod Sci 2015;55:189-93. https://doi.org/10.1071/AN14523 DOI |
10 | Keunen JE, Plaizier JC, Kyriazakis L, et al. Effects of a subacute ruminal acidosis model on the diet selection of dairy cows. J Dairy Sci 2002;85:3304-13. https://doi.org/10.3168/jds.S0022-0302(02)74419-6 DOI |
11 | Stevenson DM, Weimer PJ. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 2007;75:165-74. https://doi.org/10.1007/s00253-006-0802-y DOI |
12 | Yalcin S, Yalcin S, Can P, Gurdal AO, Bagci C, Eltan O. The nutritive value of live yeast culture (Saccharomyces cerevisiae) and its effect on milk yield, milk composition and some blood parameters of dairy cows. Asian-Australas J Anim Sci 2011;24:1377-85. https://doi.org/10.5713/ajas.2011.11060 DOI |
13 | Dolezal P, Dvoracek J, Dolezal J, et al. Effect of feeding yeast culture on ruminal fermentation and blood indicators of Holstein dairy cows. Acta Vet Brno 2011;80:139-45. https://doi.org/10.2754/avb201180020139 DOI |
14 | Denman SE, McSweeney CS. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol 2006;58:572-82. https://doi.org/10.1111/j.1574-6941.2006.00190.x DOI |
15 | Ouwerkerk D, Klieve AV, Forster RJ. Enumeration of Megasphaera elsdenii in rumen contents by real-time Taq nuclease assay. J Appl Microbiol 2002;92:753-8. https://doi.org/10.1046/j.1365-2672.2002.01580.x DOI |
16 | Magrin L, Gottardo F, Fiore E, et al. Use of a live yeast strain of Saccharomyces cerevisiae in a high-concentrate diet fed to finishing Charolais bulls: effects on growth, slaughter performance, behavior, and rumen environment. Anim Feed Sci Technol 2018;241:84-93. https://doi.org/10.1016/j.anifeedsci.2018.04.021 DOI |
17 | Moallem U, Lehrer H, Livshitz L, Zachut M, Yakoby S. The effects of live yeast supplementation to dairy cows during the hot season on production, feed efficiency, and digestibility. J Dairy Sci 2009;92:343-51. https://doi.org/10.3168/jds.2007-0839 DOI |
18 | Chaucheyras-Durand F, Walker N, Bach A. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim Feed Sci Technol 2008;145:5-26. https://doi.org/10.1016/j.anifeedsci.2007.04.019 DOI |
19 | Plaizier JC, Krause DO, Gozho GN, McBride BW. Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet J 2008;176:21-31. https://doi.org/10.1016/j.tvjl.2007.12.016 DOI |
20 | Fonty G, Chaucheyras-Durand F. Effects and modes of action of live yeasts in the rumen. Biologia 2006;61:741-50. https://doi.org/10.2478/s11756-006-0151-4 DOI |
21 | Menke K, Raab L, Salewski A, Steingass H, Fritz D, Schneider W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J Agric Sci 1979;93:217-22. https://doi.org/10.1017/S0021859600086305 DOI |
22 | Searle PL. The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review. Analyst 1984;109:549-68. https://doi.org/10.1039/AN9840900549 DOI |
23 | Chaucheyras-Durand F, Masseglia S, Fonty G. Effect of the microbial feed additive Saccharomyces cerevisiae CNCM I-1077 on protein and peptide degrading activities of rumen bacteria grown in vitro. Curr Microbiol 2005;50:96-101. https://doi.org/10.1007/s00284-004-4433-1 DOI |
24 | Cagle CM, Tedeschi LO, Runyan CA, Callaway TR, Cravey MD. Evaluation of the effects of dried live yeast on rumen pH and in situ digestibility of dry matter in growing cattle. J Anim Sci 2018;96:62-3. https://doi.org/10.1093/jas/sky027.117 DOI |
25 | Sousa DO, Oliveira CA, Velasquez AV, et al. Live yeast supplementation improves rumen fibre degradation in cattle grazing tropical pastures throughout the year. Anim Feed Sci Technol 2018;236:149-58. https://doi.org/10.1016/j.anifeedsci.2017.12.015 DOI |
26 | Cagle CM, Fonseca MA, Callaway TR, Runyan CA, Cravey MD, Tedeschi LO. Evaluation of the effects of live yeast on rumen parameters and in situ digestibility of dry matter and neutral detergent fiber in beef cattle fed growing and finishing diets. Appl Anim Sci 2020;36:36-47. https://doi.org/10.15232/aas.2019-01888 DOI |
27 | Tristant D, Moran C. The efficacy of feeding a live probiotic yeast, Yea-Sacc®, on the performance of lactating dairy cows. J Appl Anim Nutr 2015;3:e12. https://doi.org/10.1017/jan.2015.10 DOI |
28 | Diaz TG, Branco AF, Jacovaci FA, et al. Inclusion of live yeast and mannan-oligosaccharides in high grain-based diets for sheep: Ruminal parameters, inflammatory response and rumen morphology. PLoS ONE 2018;13:e0193313. https://doi.org/10.1371/journal.pone.0193313 DOI |
29 | Newbold CJ, Wallace R, McIntosh F. Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. Br J Nutr 1996;76:249-61. https://doi.org/10.1079/BJN19960029 DOI |
30 | Tripathi MK, Karim SA. Effect of individual and mixed live yeast culture feeding on growth performance, nutrient utilization and microbial crude protein synthesis in lambs. Anim Feed Sci Technol 2010;155:163-71. https://doi.org/10.1016/j.anifeedsci.2009.11.007 DOI |
31 | Krause KM, Oetzel GR. Inducing subacute ruminal acidosis in lactating dairy cows. J Dairy Sci 2005;88:3633-9. https://doi.org/10.3168/jds.S0022-0302(05)73048-4 DOI |
32 | Petri RM, Forster RJ, Yang W, McKinnon JJ, McAllister TA. Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage. J Appl Microbiol 2012;112:1152-62. https://doi.org/10.1111/j.1365-2672.2012.05295.x DOI |
33 | Pinloche E, McEwan N, Marden JP, Bayourthe C, Auclair E, Jamie Newbold C. The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. PLoS ONE 2013;8:e67824. https://doi.org/10.1371/journal.pone.0067824 DOI |
34 | Luo J, Ranadheera CS, King S, Evans C, Baines S. In vitro investigation of the effect of dairy propionibacteria on rumen pH, lactic acid and volatile fatty acids. J Integr Agric 2017;16:1566-75. https://doi.org/10.1016/S2095-3119(16)61556-3 DOI |
35 | Besharati M. Effect of Saccharomyces cerevisiae supplementation on in vitro gas production of biscuit waste. Glob J Anim Sci Res 2015;3:512-7. |
36 | Thrune M, Bach A, Ruiz-Moreno M, Stern MD, Linn JG. Effects of Saccharomyces cerevisiae on ruminal pH and microbial fermentation in dairy cows: Yeast supplementation on rumen fermentation. Livest Sci 2009;124:261-5. https://doi.org/10.1016/j.livsci.2009.02.007 DOI |
37 | Opsi F, Fortina R, Tassone S, Bodas R, LOPez S. Effects of inactivated and live cells of Saccharomyces cerevisiae on in vitro ruminal fermentation of diets with different forage: concentrate ratio. J Agric Sci 2012;150:271-83. https://doi.org/10.1017/s0021859611000578 DOI |
38 | Shu Q, Gill HS, Hennessy DW, Leng RA, Bird SH, Rowe JB. Immunisation against lactic acidosis in cattle. Res Vet Sci 1999;67:65-71. https://doi.org/10.1053/rvsc.1998.0284 DOI |
39 | Mickdam E, Khiaosa-ard R, Metzler-Zebeli BU, Klevenhusen F, Chizzola R, Zebeli Q. Rumen microbial abundance and fermentation profile during severe subacute ruminal acidosis and its modulation by plant derived alkaloids in vitro. Anaerobe 2016;39:4-13. https://doi.org/10.1016/j.anaerobe.2016.02.002 DOI |
40 | Nagaraja TG, Titgemeyer EC. Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. J Dairy Sci 2007;90:E17-E38. https://doi.org/10.3168/jds.2006-478 DOI |
41 | Kowalik B, Skomial J, Pajak JJ, et al. Population of ciliates, rumen fermentation indicators and biochemical parameters of blood serum in heifers fed diets supplemented with yeast (Saccharomyces cerevisiae) preparation. Anim Sci Pap Rep 2012;30:329-38. |
42 | Belanche A, Doreau M, Edwards JE, Moorby JM, Pinloche E, Newbold CJ. Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. J Nutr 2012;142:1684-92. https://doi.org/10.3945/jn.112.159574 DOI |
43 | Qi H, Xiang Z, Han G, Yu B, Huang Z, Chen D. Effects of different dietary protein sources on cecal microflora in rats. Afr J Biotechnol 2011;10:3704-8. https://doi.org/10.5897/AJB10.2677 DOI |
44 | Marden JP, Julien C, Monteils V, Auclair E, Moncoulon R, Bayourthe C. How does live yeast differ from sodium bicarbonate to stabilize ruminal pH in high-yielding dairy cows? J Dairy Sci 2008;91:3528-35. https://doi.org/10.3168/jds.2007-0889 DOI |
45 | Geng CY, Ren LP, Zhou ZM, Chang Y, Meng QX. Comparison of active dry yeast (Saccharomyces cerevisiae) and yeast culture for growth performance, carcass traits, meat quality and blood indexes in finishing bulls. Anim Sci J 2016;87:982-8. https://doi.org/10.1111/asj.12522 DOI |
46 | Chaucheyras F, Fonty G, Gouet P, Bertin G, Salmon J-M. Effects of a strain of Saccharomyces cerevisiae (Levucell® SC), a microbial additive for ruminants, on lactate metabolism in vitro. Can J Microbiol 1996;42:927-33. https://doi.org/10.1139/m96-119 DOI |
47 | Depeters EJ, Ferguson JD. Nonprotein nitrogen and protein distribution in the milk of cows. J Dairy Sci 1992;75:3192-209. https://doi.org/10.3168/jds.S0022-0302(92)78085-0 DOI |
48 | Bekele AZ, Koike S, Kobayashi Y. Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA genebased analysis. FEMS Microbiol Lett 2010;305:49-57. https://doi.org/10.1111/j.1574-6968.2010.01911.x DOI |
49 | Vitti A, La Monaca E, Sofo A, et al. Beneficial effects of Trichodermaharzianum T-22 in tomato seedlings infected by Cucumber mosaic virus (CMV). BioControl 2015;60:135-47. https://doi.org/10.1007/s10526-014-9626-3 DOI |
50 | Lettat A, Noziere P, Silberberg M, Morgavi DP, Berger C, Martin C. Rumen microbial and fermentation characteristics are affected differently by bacterial probiotic supplementation during induced lactic and subacute acidosis in sheep. BMC Microbiol 2012;12:142. https://doi.org/10.1186/1471-2180-12-142 DOI |
51 | Enemark JMD, Jorgensen R, Enemark PS. Rumen acidosis with special emphasis on diagnostic aspects of subclinical rumen acidosis: a review. Veterinarija ir zootechnika 2002;20:16-29. |
52 | Mao H, Mao H, Wang JK, Liu JX, Yoon I. Effects of Saccharomyces cerevisiae fermentation product on in vitro fermentation and microbial communities of low-quality forages and mixed diets. J Anim Sci 2013;91:3291-8. https://doi.org/10.2527/jas.2012-5851 DOI |
53 | Oeztuerk H, Schroeder B, Beyerbach M, Breves G. Influence of living and autoclaved yeasts of Saccharomyces boulardii on in vitro ruminal microbial metabolism. J Dairy Sci 2005;88:2594-600. https://doi.org/10.3168/jds.S0022-0302(05)72935-0 DOI |
54 | Sato S. Pathophysiological evaluation of subacute ruminal acidosis (SARA) by continuous ruminal pH monitoring. Anim Sci J 2016;87:168-77. https://doi.org/10.1111/asj.12415 DOI |
55 | Calsamiglia S, Blanch M, Ferret A, Moya D. Is subacute ruminal acidosis a pH related problem? Causes and tools for its control. Anim Feed Sci Technol 2012;172:42-50. https://doi.org/10.1016/j.anifeedsci.2011.12.007 DOI |
56 | Hobson PN, Stewart CS. The rumen microbial ecosystem. London, UK: Blackie Academic & Professional; 1997. |
57 | Malekkhahi M, Tahmasbi AM, Naserian AA, et al. Effects of supplementation of active dried yeast and malate during sub-acute ruminal acidosis on rumen fermentation, microbial population, selected blood metabolites, and milk production in dairy cows. Anim Feed Sci Technol 2016;213:29-43. https://doi.org/10.1016/j.anifeedsci.2015.12.018 DOI |
58 | Silberberg M, Chaucheyras-Durand F, Commun L, et al. Repeated acidosis challenges and live yeast supplementation shape rumen microbiota and fermentations and modulate inflammatory status in sheep. Animal 2013;7:1910-20. https://doi.org/10.1017/S1751731113001705 DOI |
59 | Hassan A, Salem A, Kholif A, et al. Performance of crossbred dairy Friesian calves fed two levels of Saccharomyces cerevisiae: intake, digestion, ruminal fermentation, blood parameters and faecal pathogenic bacteria. J Agric Sci 2016;154:1488-98. https://doi.org/10.1017/S0021859616000599 DOI |