• Title/Summary/Keyword: carbon forest

Search Result 884, Processing Time 0.03 seconds

Comparison of Plant Community Structures in Cut and Uncut Areas at Burned Area of Mt. Gumo-san (금오산(金烏山)의 산화지(山火地)에서 벌목지(伐木地)와 비벌목지(非伐木地)의 식물(植物) 군집구조(群集構造) 비교(比較))

  • Che, Sang-Hoon;Kim, Woen
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.4
    • /
    • pp.509-520
    • /
    • 1997
  • This is a report on the early vegetation, plant community structure, and secondary succession of cut and uncut sites of burned areas in Mt. Gumo-sun. The forest fire occurred on April, 1994 and the pine forest and its floor vegetation were burned down. The investigation was carried out from April, 1995 to October, 1996. The results are summarized as follows : The floristic composition of cut and uncut sites of burned area and unburned area were composed of 32, 36, and 34 kinds of vascular plants respectively. The biological spectra showed the $H(G)-D_1-R_5-e$ type, $H(M)-D_1-R_5-e$ and $M(N)-D_1-R_5-e$ in cut, uncut, and unburned site respectively. The dominant species based on $SDR_3$ of the cut site were Miscanthus sinensis var. purpurascens(100.00). Caret humilis(52.27), Quercus serrata(51.19) and Lysimachia clethroides(39.40), however, in the uncut sites the dominant species were Quercus acutissima(56.91), Pinus densiflora(26.83) in the tree layer, Quercus serrata(50.43), Lindera glauca(40.51), Lespedeza bicolor(37.85) in the shrub layer, and Miscanthus sinensis var. purpurascens(72.27), Pteridium aquilium var. latiusculum(60.92), Carex humilis(63.63) in the herb layer. Pinus densiflora(99.88), Miscanthus sinensis var. purpurascens(82.74), Quercus serrata(77.47) and Carex humilis(74.02) were dominant in the unburned site. The species diversity(H) and evenness index(e) were 1.05, 0.70 and 1.32, 0.85 in the cut and uncut site, respectively and 0.22, 0.63 in the unburned site. Dominance index(C) was 0.15, 0.06 and 0.96 in the cut, uncut site and unburned site, respectively. Degree of succession(DS) was 345.19, 747.47 and 674.34 in cut, uncut and unburned site, respectively. The index of similarity(CCs) was 0.66 between cut and uncut sites, 0.50 between unburned and cut sites and 0.61 between unburned and uncut sites. The amount of exchangeable sodium, calcium, magnesium and soil pH were increased, but the amount of organic matter, available phosphous, total nitrogen, total carbon and exchangeable potassium were decreased in cut site after fire.

  • PDF

Study on the Estimation between CO2 Flux in Tree and Atmosphere (산림-대기 간 이산화탄소 교환량 산정 연구)

  • Kim, So Young;Park, Hyun Ju;Hong, You Deog;Han, Jin Seok;Son, Jung Seok;Park, Ji Hoon
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.305-316
    • /
    • 2013
  • The purpose of this study is to monitor the flux of $CO_2$ between the atmosphere and forest. The main research activities are conducted at Taehwa Mt. (Gangju, Kyeonggi, Korea), The Taehwa site is located 60 km north-east from the center of Seoul Metropolitan Area. The TRF flux tower is in the middle of a Korean Pine (Pinus koraiensis) plantation ($400m{\times}400m$), surrounded by a mixed forest. Eddy covariance method was used for $CO_2$ flux above the forest. $CO_2$ flux was measured from September to November 2011 and March to June 2012. It was found that $CO_2$ fluxes were observed between the atmosphere and forest. $CO_2$ was absorbed by plants through photosynthesis during the day and released during the night. $CO_2$ flux were respectively observed 0.7~0.2, 0.5~0.1, $0.3{\sim}0.1mgCO_2m^{-2}s^{-1}$ in Septem- ber, October, November 2011. $CO_2$ fluxes released by plants in the early morning(00:00~07:30h) and evening(18:00~24:00h) time. But $CO_2$ was absorbed by plants through photosynthesis in the day time(08:00~7:30h).

Analysis of Emission Characteristics and Emission Factors of Carbon Monoxide and Nitrogen Oxide Emitted from Wood Pellet Combustion in Industrial Wood Pellet Boilers Supplied According to the Subsidy Program of Korea Forest Service (산림청 지원사업에 따라 보급된 산업용 목재펠릿보일러에서 목재펠릿 연소 시 배출되는 일산화탄소와 질소산화물의 배출 특성 및 배출계수 분석)

  • Kang, Sea Byul;Choi, Kyu Sung;Lee, Hyun Hee;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.597-609
    • /
    • 2018
  • Korea Forest Service has supplied 76 industrial wood pellet boilers from 2011 to 2015 through subsidy programs. Since carbon monoxide (CO) and nitrogen oxides ($NO_x$) generated during boiler combustion are substances that lead to death in the case of acute poisoning, it is very important to reduce emissions. Therefore, the CO and $NO_x$ emission values of 63 boilers excluding the hot air blower and some boilers initially supplied were analyzed. The emission factor was also calculated from the measured exhaust gas concentration (based on exhaust gas $O_2$ concentration of 12%). The average value of CO emitted from industrial wood pellet boilers was 49 ppm and it was confirmed that the CO concentration was decreasing as the years passed. The emission factor of CO was 0.73 g/kg. The average value of $NO_x$ emitted from industrial wood pellet boilers was 67 ppm and the emission factor of $NO_x$ was 1.63 g/kg. Unlike CO, there was no tendency to decrease according to the installation year. Both CO and $NO_x$ measurements met the limits of the Ministry of Environment. These $NO_x$ emission factors were compared with the $NO_x$ emission factors produced by certified low $NO_x$ burners. The $NO_x$ emission factor of industrial wood pellet boilers was about 1.9 times that of certified low $NO_x$ LNG combustors and about 0.92 times that of coal combustion.

Effect of Carbon Dioxide Concentration, Temperature, and Relative Drought on Growth Responses and Yield in Spring Potato (Solanum tuberosum L.) (이산화탄소와 온도 그리고 한발 영향에 따른 감자의 생육과 수량반응)

  • Lee, Yun-Ho;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyong;Baek, Jae-Kyeong;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.149-158
    • /
    • 2018
  • Agriculture is strongly influenced by climate change such as increased temperature and carbon dioxide ($CO_2$). This study describes the effects of climate change elevated $CO_2$, temperature, and relative drought on growth responses and yield in potato (Solanum tuberosum L.). The assessment was conducted for spring seasons in Soil-Plant-Atmosphere Research (SPAR) chamber at National Institute of Crop Science (NICS). Potatoes exhibit a positive response to $CO_2$ enrichment but water stress primarily reduces potato canopy and tuber yield. Elevated $CO_2$ and temperature increased both dry weight and tuber yield. Elevated $CO_2$ and temperature influenced SPAR 2 plants to a larger, and tuber increased yield up to 28% of than in SPAR 1(30-year average temperature at 450 ppm of $CO_2$). Our study findings indicate that tuber yield increase in potato under high $CO_2$ concentration was due to an increase in the size of individual tubers rather than in the number of the tubers per plant. On other hand, SPAR 3(30-year average temperature $+2.8^{\circ}C$ at 700 ppm of $CO_2$ under water stress) was lower than SPAR 2(30-year average temperature $+2.8^{\circ}C$ at 700 ppm of $CO_2$) nearly 56% of tuber yield due to drought. The results confirm potato drought sensitivity in terms of yield response. The experiment also showed that, in the conditions of climate change, climate change scenarios that improve cropping systems with potato.

Analysis of Contribution to Net Zero of Non-Urban Settlement - For Green Infrastructure in Rural Areas - (비도시 정주지의 탄소중립 기여도 분석 - 농촌지역 그린인프라를 대상으로 -)

  • Lee, Dong-Kyu;An, Byung-Chul
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.3
    • /
    • pp.19-34
    • /
    • 2022
  • This study was conducted to provide basic data that can be used when establishing Net Zero policies and implementation plans for non-urban settlements by quantitatively analyzing the Net Zero contribution to green infrastructure in rural areas corresponding to non-urban settlements. The main purpose is to first, systematize green infrastructure in rural areas, secondly derive basic units for each element of green infrastructure, and thirdly quantify and present the impact on Net Zero in Korea using these. In this study, CVR(Content Validity Ration) analysis was performed to verify the adequacy of green infrastructure elements in rural areas derived through research and analysis of previous studies, is as follows. First, Hubs of Green infrastructure in rural area include village forests, wetlands, farm land, and smart farms with a CVR value of .500 or higher. And Links of Green infrastructure in rural area include streams, village green areas, and LID (rainwater recycling). Second, the basic unit for each green infrastructure element was presented by classifying it into minimum, maximum, and median values using the results of previous studies so that it could be used for spatial planning and design for Net Zero. Third, when Green infrastructure in rural areas is applied to non-urban settlements in Korea, it is analyzed that it has the effect of indirectly reducing CO2 by at least 70.76 million tons and up to 141.16 million tons. This is 3.4 to 6.7 times the amount of CO2 emission from the agricultural sector in 2019, and it can be seen that the contribution to Net Zero is very high. It is expected to greatly contribute to the transformation of the ecosystem. This study quantitatively presented the carbon-neutral contribution to settlements located in non-urban areas, and by deriving the carbon reduction unit for each element of green infrastructure in rural areas, it can be used in spatial planning and design for carbon-neutral at the village level. It has significance as a basic research. In particular, the basic unit of carbon reduction for each green infrastructure factors will be usable for Net Zero policy at the village level, presenting a quantitative target when establishing a plan, and checking whether or not it has been achieved. In addition, based on this, it will be possible to expand and apply Net Zero at regional and city units such as cities, counties, and districts.

Development of High-frequency Data-based Inflow Water Temperature Prediction Model and Prediction of Changesin Stratification Strength of Daecheong Reservoir Due to Climate Change (고빈도 자료기반 유입 수온 예측모델 개발 및 기후변화에 따른 대청호 성층강도 변화 예측)

  • Han, Jongsu;Kim, Sungjin;Kim, Dongmin;Lee, Sawoo;Hwang, Sangchul;Kim, Jiwon;Chung, Sewoong
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.5
    • /
    • pp.271-296
    • /
    • 2021
  • Since the thermal stratification in a reservoir inhibits the vertical mixing of the upper and lower layers and causes the formation of a hypoxia layer and the enhancement of nutrients release from the sediment, changes in the stratification structure of the reservoir according to future climate change are very important in terms of water quality and aquatic ecology management. This study was aimed to develop a data-driven inflow water temperature prediction model for Daecheong Reservoir (DR), and to predict future inflow water temperature and the stratification structure of DR considering future climate scenarios of Representative Concentration Pathways (RCP). The random forest (RF)regression model (NSE 0.97, RMSE 1.86℃, MAPE 9.45%) developed to predict the inflow temperature of DR adequately reproduced the statistics and variability of the observed water temperature. Future meteorological data for each RCP scenario predicted by the regional climate model (HadGEM3-RA) was input into RF model to predict the inflow water temperature, and a three-dimensional hydrodynamic model (AEM3D) was used to predict the change in the future (2018~2037, 2038~2057, 2058~2077, 2078~2097) stratification structure of DR due to climate change. As a result, the rates of increase in air temperature and inflow water temperature was 0.14~0.48℃/10year and 0.21~0.41℃/10year,respectively. As a result of seasonal analysis, in all scenarios except spring and winter in the RCP 2.6, the increase in inflow water temperature was statistically significant, and the increase rate was higher as the carbon reduction effort was weaker. The increase rate of the surface water temperature of the reservoir was in the range of 0.04~0.38℃/10year, and the stratification period was gradually increased in all scenarios. In particular, when the RCP 8.5 scenario is applied, the number of stratification days is expected to increase by about 24 days. These results were consistent with the results of previous studies that climate change strengthens the stratification intensity of lakes and reservoirs and prolonged the stratification period, and suggested that prolonged water temperature stratification could cause changes in the aquatic ecosystem, such as spatial expansion of the low-oxygen layer, an increase in sediment nutrient release, and changed in the dominant species of algae in the water body.

Seedling Age Effects on the Growth and Nutrient Uptake of Chamaecyparis obtusa Container Seedlings (편백 용기묘의 묘령에 따른 생장 및 양분 흡수 특성)

  • Deokgyo Jeong;Gyeongwon Baek;Choonsig Kim
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • This study was performed to determine the effects of Four seedling age classes ageon the characteristics of growth and nutrient uptake in Chamaecyparis obtusa container seedlings. Seedlings (1-1, 2-0, 2-1, and 2-2 seedlings) of C. obtusa grown in containers were harvested to measure specific leaf area, height (H)/root collar diameter (D) ratio, dry mass of aboveground (T)/root dry mass (R) ratio, and seedling quality index of seedlings. The specific leaf area was highest in 1-0 seedlings (30.48 cm2 g-1), whereas it decreased (from 28.62 cm2 g-1 to 23.59 cm2 g-1) with increasing seedling age. The H/D ratio increased with increasing seedling age (from 4.41 in 1-0 seedlings to 8.35 in 2-2 seedlings). The T/R ratio decreased as the seedling age increased (from 4.29 in the 1-0 seedling to 2.13 in the 2-1 seedling). The seedling quality index increased with increasing seedling age (from 0.10 for the 1-0 seedling to 3.06 for the 2-2 seedling). The carbon concentrations of seedling components (leaf, branches, stem, and roots) did not differ significantly with seedling age, whereas the nitrogen concentration of seedling components was the lowest in 2-1 seedlings, as no fertilizer was applied to discourage excessive growth of the seedlings. Phosphorus, potassium, and magnesium concentrations in 2-1 seedling components were not affected by the lack of fertilizer application. These results can be applied to determine the optimum morphological characteristics and nutrient management by seedling age in container- grown C. obtusa.

Biodegradation of Kraft Lignins by White-Rot Fungi(I) -Lignin from Pitch Pine- (백색부후균에 의한 크라프트 리그닌의 분해(I) -리기다소나무 리그닌-)

  • 김명길;안원영
    • Journal of Korea Foresty Energy
    • /
    • v.17 no.1
    • /
    • pp.56-70
    • /
    • 1998
  • This study was carried out to investigate the structural characteristics of kraft lignin and the wood degrading characteristics, the productivity of ligninolytic enzymes and the enzymatic degradation of kraft lignin by white-rot fungi. To purify kraft lignin, precipitation of kraft pulping black liquors of pitch pine meal was done by titration with lN $H_{2}SO_{4}$ reaching to pH 2, and isolation of the precipitates done by centrifugation. The isolated precipitates from pitch pine were redissloved in lN NaOH, reprecipitated by titration with lN $H_{2}SO_{4}$, washed with deionized water, and kept ofr analysis after freeze drying. Fractionation of the precipitates in solution by successive extraction with $CH_{2}Cl_{2}$ and MeOH, and the fractionates were named SwKL, SwKL I, SwKL II, and SwKL III for pitch pine kraft lignin. The more molecular weights of kraft lignin increased, the less phenolic hydroxyl groups and the more aliphatic hydroxyl groups. Because as the molecular weights increased, the ratio of etherified guaiayl/syringyl(G/S ratio) and the percentage were increased. The spectra obtained by 13C NMR and FTIR assigned by comparing the chemical shifts of various signals with shifts of signals from autherized ones reported. The optimal growth temperature and pH of white-rot fungi in medium were $28^{\circ}C$ and 4.5-5.0, respectively. Especially, in temperature and pH range, and mycelial growth, the best white-rot fungus selected was Phanerochaete chrysosporium for biodegradation. For the degradation pathways, the ligninolytic fungus jcultivated with stationary culture using medium of 1% kraft lignin as a substrate for 3 weeks at $28^{\circ}C$. The weight loss of pitch pine kraft lignin was 15.8%. The degraded products extracted successively methoanol, 90% dioxane and diethyl ether. The ether solubles were analyzed by HPLC. Kraft lignin degradation was initiated in $\beta$-O-4 bonds of lignin by the laccase from Phanerochaete chrysosporium and the degraded compounds were produced from the cleavage of $C\alpha$-$C\beta$ linkages at the side chains by oxidation process. After $C\alpha$-$C\beta$ cleavage, $C\alpha$-Carbon was oxidized and changed into aldehyde and acidic compounds such as syringic acid, syringic aldehyde and vanilline. And the other compound as quinonemethide, coumarin, was analyzed. The structural characteristics of kraft lignin were composed of guaiacyl group substituted functional OHs, methoxyl, and carbonyl at C-3, -4, and -5 and these groups were combinated with $\alpha$ aryl ether, $\beta$ aryl ether and biphenyl. Kraft lignin degradation pathways by Phanerochaete chrysosporium were initially accomplished cleavage of $C\alpha$-$C\beta$ linkages and $C\alpha$ oxidation at the propyl side chains and finally cleavage of aromatic ring and oxidation of OHs.

  • PDF

섭제골 지역의 산화지 및 비산화지의 군락구조 비교

  • Sim, Hak-Bo;Kim, Woen
    • The Korean Journal of Ecology
    • /
    • v.16 no.4
    • /
    • pp.429-438
    • /
    • 1993
  • This is a report on the early vegetation and the secondary succession in the burned area of SeobJe-Go1 of $IIwasan-MY\v{o}n,\;Y\v{o}ngch\v{o}n-Gun,\;Ky\v{u}ngsangbuk-do$ Province. The forest fire occurred on April 8, 1982 and the pine forest and its floor vegetation were burned down. The investigation was done six times from August 20, 1982 to August 13, 1983. The results are summarized as follows: the floristic composition of burned areas $B_1,\;B_2$, and unburned areas $U_1,\;U_2$ were composed of 25, 23, 32, and 27 kinds of vascular plants. respectively. The biological spectra showed the $H-D_1-R_5-e$ type in both the burned and unburned areas. The species of Arundinella hirta, Miscanthus simnsis var. purpurascens and Cares hurnilis var. nana were dominant species in the burned area, while Pinus densiflorrr, Corex humilis var. nana and Rhododendron mucronulatum var. ciliafum were dominant species in the unburned area. Degree of succession of the unburned area was comparatively higher than that of the burned area. Species diversity index and evenness index of the burned area were similar to those of the unburned area. Indices of similarity in sampling sites showed that $B_1\;and\;B_2$ stands were the most similar. pH, total nitrogen, available phosphorus and exchangeable potassium of soil increased but organic matter and total organic carbon decreased after fire.

  • PDF

Estimation of C Storage and Annual $CO_2$ Uptake by Street Trees in Gyeonggi-do (경기도 도시가로수의 탄소저장량과 연간 이산화탄소 흡수량 산정)

  • Park, Eun-Jin;Kang, Kyu-Yi
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.5
    • /
    • pp.591-600
    • /
    • 2010
  • We estimated and compared C storages and annual $CO_2$ uptakes by 9 dominant tree species planted along the streets. DBH and age by tree species were measured in the sites selected considering the planting status and distributions of tree species, and biomass, C storage, growth rate, and annual $CO_2$ uptake were estimated for each species. As a result, L. tulipifera, M. glyptostroboides, P. occidentalis were classified into fast-growing group, P. serrulata, G. biloba, Z. serrata, S. japonica, A. palmatum showed intermediate growth rates, and P. densiflora was slow-growing. Average C storage per tree was 205kgC/tree and ranged from 518kgC/tree(L. tulipifera) to 41kgC/tree(P. densiflora). Average annual $CO_2$ uptake by urban street trees over their lifespan ranged from $7.6kgCO_2$/tree/y to $99.1kgCO_2$/tree/y and L. tulipifera was the greatest, followed by glyptostroboides and P. occidentalis, and P. densiflora was the lowest. Total annual $CO_2$ uptake by all street trees in Gyeonggi-do, estimated based on the annual $CO_2$ uptake by each species, was as small as approximately 0.67% of that by forest in Gyeonggi-do. However, urban trees are still important because forest area continues to decrease and urbanization occurs annually in Gyeonggi-do, and should be managed considering their multi-functional aspects, including mitigation of heat island effect and building energy saving(indirect $CO_2$ uptake).