DOI QR코드

DOI QR Code

Effect of Carbon Dioxide Concentration, Temperature, and Relative Drought on Growth Responses and Yield in Spring Potato (Solanum tuberosum L.)

이산화탄소와 온도 그리고 한발 영향에 따른 감자의 생육과 수량반응

  • Lee, Yun-Ho (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Cho, Hyeoun-Suk (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Jun-Hwan (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Sang, Wan-Gyu (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Shin, Pyong (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Baek, Jae-Kyeong (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration) ;
  • Seo, Myung-Chul (Crop Physiology and Production, National Institute of Crop Science, Rural Development Administration)
  • 이윤호 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 조현숙 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 김준환 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 상완규 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 신평 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 백재경 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 서명철 (농촌진흥청 국립식량과학원 작물재배생리과)
  • Received : 2018.03.30
  • Accepted : 2018.06.05
  • Published : 2018.06.30

Abstract

Agriculture is strongly influenced by climate change such as increased temperature and carbon dioxide ($CO_2$). This study describes the effects of climate change elevated $CO_2$, temperature, and relative drought on growth responses and yield in potato (Solanum tuberosum L.). The assessment was conducted for spring seasons in Soil-Plant-Atmosphere Research (SPAR) chamber at National Institute of Crop Science (NICS). Potatoes exhibit a positive response to $CO_2$ enrichment but water stress primarily reduces potato canopy and tuber yield. Elevated $CO_2$ and temperature increased both dry weight and tuber yield. Elevated $CO_2$ and temperature influenced SPAR 2 plants to a larger, and tuber increased yield up to 28% of than in SPAR 1(30-year average temperature at 450 ppm of $CO_2$). Our study findings indicate that tuber yield increase in potato under high $CO_2$ concentration was due to an increase in the size of individual tubers rather than in the number of the tubers per plant. On other hand, SPAR 3(30-year average temperature $+2.8^{\circ}C$ at 700 ppm of $CO_2$ under water stress) was lower than SPAR 2(30-year average temperature $+2.8^{\circ}C$ at 700 ppm of $CO_2$) nearly 56% of tuber yield due to drought. The results confirm potato drought sensitivity in terms of yield response. The experiment also showed that, in the conditions of climate change, climate change scenarios that improve cropping systems with potato.

본 연구는 지구온난화에 따른 봄 감자에 대한 상승된 $CO_2$농도, 온도 그리고 한발에 미치는 영향을 평가를 위해 국립식량과학원 옥외환경시설에서 수행을 하였다. 감자는 C3식물로 상승된 $CO_2$농도와 적정 온도에 효과적인 생육 반응을 하지만, 괴경비대기의 한발은 수량 증가를 억제 시킨다. 괴경 수량은 상승된 $CO_2$농도와 온도 그리고 한발 처리에 따라 상당히 유의한 차이를 보여 주었다. SAPR 2는 SPAR 1에 비하여 수량이 28% 증가 되었는데, 생육기간 동안 SPAR 2는 $CO_2$ 효과와 적정온도로 주당 괴경수의 증가보다는 개체당 괴경의 크기에 의해 수량이 결정 된 것으로 판단된다. 한편 SPAR 3은 SPAR 2에 비하여 약 56% 수량 감소를 하였다. 괴경비대기의 한발은 형태적으로 간장과 측지수의 감소와 건물중 생산에 저해를 주었다. 생리적으로 엽록소와 질소 양분흡수을 감소시켜 결국 광합성률 감소와 괴경으로 전류 되는 동화산물이 낮아지면서 수량 감소 원인이 된 것으로 판단되었다. 따라서 향후 이상 기후 대응을 위해, 다양한 기후 조건에서 재배되는 감자의 생육을 파악하기 위한 기후변화 시나리오 및 봄 감자의 작부체계 개선이 필요할 것으로 판단된다.

Keywords

References

  1. Anithakumari, A. M., O. Dolstra, B. Vosman, R. F. Visser, and G. V. D. Linden, 2011: In vitro screening and QTL analysis for drought tolerance in diploid potato. Euphytica 181, 357-369. https://doi.org/10.1007/s10681-011-0446-6
  2. Basu, P. S., A. Sharma, I. D. Garg, and N. P. Sukumaran, 1999: Tuber sink modifies photosynthetic response in potato under water stress. Environmental and Experimental Botany 42, 25-39. https://doi.org/10.1016/S0098-8472(99)00017-9
  3. Bindi, M., F. Miglietta, E. Vaccari, V. Magliulo, and A. Giuntoli, 2006: Growth and quality responses of potato elevated [$CO_{2}$]. Ecological Studies 187, 105-119.
  4. Chaves, M., J. S. Pereira, J. Maroco, M. L. Rodrigues, C. P. P. Ricardo, M. L. Osorio, I. Carvalho, T. Faria, and C.Pinheiro, 2002: How plants cope with water stress in the field. Photosynthesis and growth. Annals of Botany 89, 907-916. https://doi.org/10.1093/aob/mcf105
  5. Choi, S.U., A. S. Lee, S. J. Jeon, K. D. Kim, M. C. Seo, W. S. Jung, J. H. Maeng, and I. J. Kim, 2014: Estimating the yield of potato Non-Mulched sing Climatic Elements. Korean Journal of Crop Science 59, 89-96. https://doi.org/10.7740/kjcs.2014.59.1.089
  6. CIP (Climate information portal), 2017: The 2016 abnormal climate report. www.climate.go.kr/
  7. Donnelly, A., J. Craigon, C. R. Black, J. J. Colls, and G. Landon, 2001: Elevated $CO_2$ increases biomass and tuber yield in potato even at high ozone concentration. New phycologist 149, 265-274. https://doi.org/10.1046/j.1469-8137.2001.00015.x
  8. ESRL (Earth system research laboratory), 2018: ESRL Global Monitoring Division. (www.esrl.noaa.gov/gmd/ccgg/trends/global.html)
  9. Fleisher, D. H., D. J. Timlin, and V. R. Reddy, 2008a: Elevated carbon dioxide and water stress effects on potato canopy gas exchange, water use, and productivity. Agricultural and Forest Meteorology 148, 1109-1122. https://doi.org/10.1016/j.agrformet.2008.02.007
  10. Fleisher, D. H., D. J. Timlin, and V. R. Reddy, 2008b: Interactive effects of carbon dioxide and water stress on potato canopy growth and development. Agronomy Journal 100, 711-719. https://doi.org/10.2134/agronj2007.0188
  11. Fleisher, D. H., J. Barnaby, R. Sicher, J. P. Resop, D. J. Timlin, and V. R. Reddy, 2013: Effects of elevated $CO_2$ and cyclic drought on potato under varying radiation regimes. Agricultural and Forest Meteorology 171-172, 270-280. https://doi.org/10.1016/j.agrformet.2012.12.011
  12. Fleisher, D. H., J. Barnaby, R. Sicher, J. P. Resop, D. J. Timlin, and V. R. Reddy, 2014: Potato gas exchange response to drought cycles under elevated carbon dioxide. Agronomy Journal 106, 2024-2034. https://doi.org/10.2134/agronj14.0220
  13. Gudmestad, N. C., 2008: Potato health from sprouting to harvest. Potato health management, D. A. Johnson and M. L. Powelson (ed). APS Press, St. Paul, Minnesota, USA, 67-77.
  14. Haverkort, A., M.Vandewaart, and K. B. A. Bodlaender, 1990: The effect of early drought stress on numbers of tubers and stolons of potato in controlled and field conditions. Potato Research 33, 89-96. https://doi.org/10.1007/BF02358133
  15. Hogy, P., and A. Fangmeier, 2009: Atmospheric $CO_2$ enrichment affects potatoes: 2. tuber quality traits. European Journal of Agronomy 30, 85-94. https://doi.org/10.1016/j.eja.2008.07.006
  16. Kaminski, K. P., K. Korup, K. L. Nielsen., F. Liu, H. B. Topbjerg, H. G. Kirk, and M. N. Andersen, 2014: Gas-exchange, water use efficiency and yield responses of elite potato (Solanum tuberosum L) cultivars to changes in atmospheric carbon dioxide concentration, temperature and relative humidity. Agricultural and Forest Meteorology 187, 36-45. https://doi.org/10.1016/j.agrformet.2013.12.001
  17. Kim, Y. U., and B. W. Lee, 2016: Effect of high temperature, day length, and reduced solar radiation on potato growth and yield. Korean Journal of Agricultural and Forest Meteorology 18, 74-87. https://doi.org/10.5532/KJAFM.2016.18.2.74
  18. KMA (Korean meteorological administration), 2017: http://hydro.kma.go.kr/drought/obsAdm.do
  19. KOSIS (Korean statistical information service), 2017: http://kosis.kr/index/index.jsp
  20. Lahlou, O., S. Ouattar, and J. F. Ledent, 2003: The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie 23, 257-268. https://doi.org/10.1051/agro:2002089
  21. Long, S. P., E. A. Ainsworth, A. Rogers, and D. R. Ort, 2004: Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Biology 55, 591-628. https://doi.org/10.1146/annurev.arplant.55.031903.141610
  22. Martin, B., and N. A. Ruiztorres, 1992: Effects of water-deficit stress on photosynthesis, its components, and component limitations, and on water-use efficiency in wheat (triricum-aestivum L.). Plant Physiology 100, 733-739. https://doi.org/10.1104/pp.100.2.733
  23. Miglietta, F., V. Magliulo, M. Bindi, L. Cerio, F. P. Vaccari, and A. Peressottis, 1998: Free air $CO_2$ enrichment of potato (Solanum tuberosum L.): Development, growth and yield. Global Change Biology 4, 163-172. https://doi.org/10.1046/j.1365-2486.1998.00120.x
  24. Morison, J. I. L. and D.W. Lawlor, 1999: Interaction between increasing $CO_2$ concentration and temperature on plant growth Plant Cell & Environment 22, 659-682. https://doi.org/10.1046/j.1365-3040.1999.00443.x
  25. Obidiegwu, J. E., G. B. Bryan, H. G. Jones, and A. Prashar, 2015: Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Frontiers in Plant Science 6, 1-21. doi:10.3389/fpls.2015.00542.
  26. RDA (Rural Development Administration), 2018: Agricultural weather service. (http://weather.rda.go.kr)
  27. Reddy. K. R., H. F. Hodges, J. J. Red, J.M. Mckinion, J. T. Baker, L. Trapley, and V. R. Redd, 2001: Soil-plant-atmosphere-research (SPAR) facility: A tool for plant research and modelling. Biotronics 30, 27-50.
  28. Schapendonk, H. C. M., M. van. Oijen, P. Dijkstra, C. S. Pot, W. J. R. M. Jordi, and G. M. Stoopen, 2000: Effects of elevated $CO_2$ concentration on photosynthetic acclimation and productivity of two potato cultivars grown in open-top chambers. Australian Journal Plant Physiology 27, 1119-1130.
  29. Sicher, R. C., and J. A. Bunce, 1999: Photosynthetic enhancement and conductance to water vapor of filed-grown Solanum tuberosum (L.) in response to $CO_2$ enrichment. Photosynth Research 62, 155-163. https://doi.org/10.1023/A:1006327931675
  30. Sharkey, T. D., C. J. Bernacchi, G. D. Farquhar, and E. L. Singsaas, 2007: Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell & Environment 30, 1035-1040. https://doi.org/10.1111/j.1365-3040.2007.01710.x
  31. Tardieu, F., 2012: Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. Journal of Experimental Botany 63, 25-31. https://doi.org/10.1093/jxb/err269
  32. Wheeler, R. M., C. L. Mackowiak, J. C. Sager, and W. M. Knott, 1994: Growth of soybean and potato at high $CO_2$ partial pressures. Advances in Space Research 14, 251-255. https://doi.org/10.1016/0273-1177(94)90305-0
  33. Wheeler, R. M., C. L. Mackowiak, N. C. Yorioand, and J. C. Sage, 1999: Effects of $CO_2$ on stomatal conductance: Do stomata open at very high $CO_2$ concentrations? Annals of Botany 83, 243-251. https://doi.org/10.1006/anbo.1998.0813
  34. Xu, F., W. Guo, Y. Wei, and R. Wang, 2009: Leaf morphology correlates with water and light availability: what consequences for simple and compound leaves? Progress in Natural Science 19, 1798-1798.
  35. Wurr, D. C. E., 1977: Some observations of patterns of tuber formation and growth in the potato. Potato Research 20, 63-75. https://doi.org/10.1007/BF02362301
  36. Yamaguchi, M., H. Timm, and A. R. Spurr, 1964: Effects of soil temperature on growth and nutrition of potato plants and tuberization, composition and periderm structure of tubers. Journal for the American Society for Horticultural Science 84, 412-423.
  37. Yamori, W., K. Noguchi, and I. Terashimal, 2005: Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependence of photosynthetic partial reactions. Plant Cell & Environment 28, 536-547. https://doi.org/10.1111/j.1365-3040.2004.01299.x
  38. Yamori, W., K. Hikosaka, and D. A. Way, 2014: Temperature response of photosynthesis in $C_{3}$, $C_{4}$, and CAM plants: temperature acclimation and temperature adaption. Photosynth Research 119, 101-117. https://doi.org/10.1007/s11120-013-9874-6
  39. Zhenming, J. L., C. F. Jiao, X. Bai, D. Zhang, and R. Zhai, 2017: Influence of drought stress o photosynthetic characteristics and protective enzymes of potato at seedling stage. Journal of Saudi Society of Agricultural Sciences 16, 82-88. https://doi.org/10.1016/j.jssas.2015.03.001