• Title/Summary/Keyword: carbon dynamics

Search Result 373, Processing Time 0.03 seconds

Nanoscale Nonlinear Dynamics of Carbon Nanotube Probe Tips (탄소나노튜브 탐침의 나노 비선형 동역학)

  • 이수일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.83-86
    • /
    • 2004
  • Carbon nanotube (CNT) tips in tapping mode atomic force microscopy (AFM) enable very high-resolution imaging, measurements, and manipulation at the nanoscale. We present recent results based on experimental analysis that yield new insights into the dynamics of CNT probe tips in tapping mode AFM. Experimental measurements are presented of the frequency response and dynamic amplitude-distance data of a high-aspect-ratio multi-walled (MW) CNT tip to demonstrate the non-linear features including tip amplitude saturation preceding the dynamic buckling of the MWCNT. Surface scanning is performed using a MWCNT tip on a SiO$_2$ grating to verify the imaging instabilities associated with MWCNT buckling when used with normal control schemes in the tapping mode. Lastly, the choice of optimal setpoints for tapping mode control using CNT probe tip are discussed using the experimental results.

  • PDF

Equilibria and Dynamics of Toluene and Trichloroethylene onto Activated Carbon Fiber

  • Park, Jee-Won;Lee, Young-Whan;Choi, Dae-Ki;Lee, Sang-Soon
    • Clean Technology
    • /
    • v.8 no.2
    • /
    • pp.93-99
    • /
    • 2002
  • Adsorption dynamics for toluene and trichloroethylene with an isothermal fixed bed of activated carbon fiber were investigated. Equilibrium isotherms were measured by a static method for toluene and trichloroethylene onto activated carbon fiber at temperatures of 298, 323, and 348 K and pressure up to 3 kPa for toluene and 6 kPa for trichloroethylene, respectively. These results were correlated by the Toth equation. And dynamic experiments in an isothermal condition of 298 K were examined. Breakthrough curves reflected the effects of the experimental variables such as partial pressures for adsorbate and interstitial bulk velocities of gas flow. To present the column dynamics, a dynamic model based on the linear driving force (LDF) mass transfer model was applied.

  • PDF

Study on frictional behavior of carbon nanotube with respect to potential function by molecular dynamics simulation (카본나노튜브의 포텐셜 함수에 따른 마찰거동에 대한 분자동역학 시뮬레이션 연구)

  • Kim, Hyun-Joon;Kim, Dae-Eun
    • Transactions of the Society of Information Storage Systems
    • /
    • v.9 no.2
    • /
    • pp.36-41
    • /
    • 2013
  • Frictional behavior of a single carbon nanotube(CNT) was investigated using molecular dynamics simulation. A single CNT aligned horizontally on silver or graphene substrate was modeled to evaluate its frictional behavior such as frictional force and rolling/sliding motion with respect to potential parameter and lattice structure of the substrate. As a result, it was found that friction and rolling was affected by adhesion between two surfaces and period of the rolling depended on lattice distance of the substrate.

Effects of mixed contents of carbon nanoreinforcements on the impact resistance of epoxy-based nanocomposites

  • Ayatollahi, M.R.;Naeemi, A.R.;Alishahi, E.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.157-167
    • /
    • 2015
  • The impact behavior of epoxy-based nanocomposites reinforced with carbon nano tube (CNT), carbon nano fiber (CNF) and mixed contents of these nanoparticles was investigated using Izod impact test. The results showed that while the impact strength of nanocomposites containing 1 wt% of CNT and 1 wt% of CNF increased 19% and 13% respectively, addition of mixed contents of these nanofillers (0.5-0.5 wt%) demonstrated higher improvement (21%) in the impact resistance. The trend of the results is explained on the basis of different fracture mechanisms of nanocomposites. Furthermore, the fracture surface of specimens and the dispersion state of nanoenhancers have been studied using scanning electron microscopy (SEM) photographs.

Growth Dynamics and Carbon Incorporation of the Seagrass, Zostera marina L. in Jindong Bay and Gamak Bay on the Southern Coast of Korea (진동만과 가막만에 서식하는 잘피 개체군의 생장 동태 및 탄소고정량 추정)

  • Kim, Tae-Hwan;Rark, Sang-Rul;Kim, Young-Kyun;Kim, Jong-Hyeob;Kim, Seung-Hyeon;Kim, Jeong-Ha;Chung, Ik-Kyo;Lee, Kun-Seop
    • ALGAE
    • /
    • v.23 no.3
    • /
    • pp.241-250
    • /
    • 2008
  • Since seagrasses in the coastal and estuarine ecosystems achieve high levels of production, they require high inorganic carbon and nutrient incorporation. Thus, seagrasses may play a significant role in carbon and nutrient cycling in the coastal and estuarine ecosystems. To examine growth dynamics of Zostera marina L. environmental factors such as underwater irradiance, water temperature, and salinity, and biological parameters such as shoot density, biomass, shoot morphology, and leaf productivity were measured in two bay systems (Jindong Bay and Gamak Bay) on the southern coast of Korea. While underwater irradiance did not show distinct seasonal trend, water temperature at both sites exhibited clear seasonal trend throughout the experimental period. Shoot density increased dramatically during winter due to the increased seedlings through germination of seeds in Jindong Bay and due to the increased lateral shoots in Gamak Bay. Eelgrass biomass increased during winter and decreased during summer. Maximum biomass in Jindong Bay and Gamak Bay was 250.2 and 232.3 g dry weight m–a2, respectively. Carbon incorporation into the eelgrass leaf tissues was estimated from productivity and leaf tissues carbon content. The calculated annual carbon incorporations at the Jindong Bay and Gamak Bay sites were 163 and 295 g C m–`2 y–`1, respectively. This high carbon incorporation into seagrass tissues suggests that seagrass habitats play an important role as a carbon absorber in the coastal and estuarine ecosystems.

Structure-Activity Relationships Study of Angiotensin Converting Enzyme Inhibitor Captopril Derivatives: Importance of Solution Moleculnr Dynamics Study (Angiotensin 변환 효소 억제제인 Captopril 유도체들의 구조와 활성관계 연구: 수용액상의 분자동력학적 연구의 중요성)

  • 지명환;윤창노;진창배;박종세
    • Biomolecules & Therapeutics
    • /
    • v.2 no.1
    • /
    • pp.34-38
    • /
    • 1994
  • In order to investigate the structure-activity relationships of the stereoisomers of angiotensin converting enzyme inhibitors, captopril and its derivatives were selected as model compounds. In vitro enzymatic activities of them depend on the symmetry at the asymmetric carbons. Especially, the alanyl carbon should have the S configuration to be biologically active. But the demethylated captopril having the achiral carbon also shows the activity although it is less active than captopril. Seven stereoisomers of captopril and its derivatives were chosen and their acidic and ionic forms were used for molecular dynamics simulations. Four computer simulations were practiced for each model compound in order to obtain the good condition for simulation to explain the experimental structure-activity relationships. From the computer simulation results, relativistic movements of three well-known pharmacophoric sites, carboxylate carbon, carbonyl oxygen, and sulfur atoms, were analyzed. Good results were obtained from the aqueous solution molecular dynamics simulation with ionic forms of model compounds. Active model compounds have the pharmacophoric areas of 6.08 to 6.38 $\AA$$^2$and the similarity in the geometrical data. But inactive ones have the largely deviated values of 4.51 to 4.87 $\AA$$^2$from those of active ones.

  • PDF

System Dynamics Application for the Evaluation of Greenhouse Gases Reduction Policy (시스템다이내믹스 기법을 이용한 온실가스 감축정책 평가)

  • Jang, Namjung;Kim, Min-Kyong;Yang, Go-Su
    • Korean System Dynamics Review
    • /
    • v.14 no.1
    • /
    • pp.55-68
    • /
    • 2013
  • It is necessary to evaluate the greenhouse gases (GHGs) reduction policy by central and regional governments to set up the suitable GHG emissions measures. Quantitative, qualitative and synthetic methods have been adopted by previous researches to estimate GHG reduction policy. However, these methods mostly focused on the results of the reduction policy, rather than understanding and fixing the integrated structures of GHG emissions. In this research, System Dynamics(SD) was applied to 1 million green homes program, self-carfree-day system and carbon point program. The results showed that SD analyses could be appliable for the estimation of GHG reduction policy by developing the feedback loops and dynamic simulation model. SD can be consider as a supplementary tool to estimate the GHG reduction policies through the recognition of the structure in complex real system.

  • PDF

Application of Carbon Nanotube Encapsulating Nanowire (탄소나노튜브로 둘러싸인 나노와이어 구조의 오실레이터 응용)

  • Song, Young-Jin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.4
    • /
    • pp.1-4
    • /
    • 2007
  • Carbon nanotube oscillators encapsulating copper nanowire were investigated by molecular dynamics simulations. The excess forces due to the carbon-carbon van der Waals interactions are higher than the excess force due to carbon-copper interactions. And the masses of copper atoms are higher than those of carbon atoms. So, the carbon atoms are easier accelerated than the copper atoms. When the encapsulated copper nanowire deforms the encapsulating nanotube, the frequency can not be estimated by the mass-frequency dependence in classical oscillation theory.

  • PDF

Molecular dynamics study on initial growth behavior of amorphous carbon film under various incidence angles

  • Joe, Min-Woong;Moon, Myoung-Woon;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.310-310
    • /
    • 2011
  • Morphological evolution of amorphous carbon film is investigated by molecular dynamics simulation. Here, energetic carbon atoms (75 eV) are deposited on the diamond (001) substrate to find effect of incidence angles. At normal and near-normal incidences ($0^{\circ}{\sim}30^{\circ}$) atomically smooth surfaces are observed during their growth. However, rough surfaces emerge and develop into a ripple structure at grazing incidences ($60^{\circ}{\sim}70^{\circ}$). The different growth modes according to the incidence angles can be described by impact-induced displacements of atoms. Downhill transport along any sloped surfaces is predominant for the case of normal incidence. As the incidence angles become grazing, uphill transport is allowed along the surfaces, which have smaller slopes than incidence angle, so the surface features can be amplified. Impact-induced transport and self-shadowing effect can be responsible to the initial growth of seeding structures at a grazing incidence, which would be grown up as tilted columnar structures in further depositions.

  • PDF