Browse > Article
http://dx.doi.org/10.4490/ALGAE.2008.23.3.241

Growth Dynamics and Carbon Incorporation of the Seagrass, Zostera marina L. in Jindong Bay and Gamak Bay on the Southern Coast of Korea  

Kim, Tae-Hwan (Department of Biology, Pusan National University)
Rark, Sang-Rul (Department of Biology, Pusan National University)
Kim, Young-Kyun (Department of Biology, Pusan National University)
Kim, Jong-Hyeob (Department of Biology, Pusan National University)
Kim, Seung-Hyeon (Department of Biology, Pusan National University)
Kim, Jeong-Ha (Department of Biological Science, Sungkyunkwan University)
Chung, Ik-Kyo (Division of Earth Environmental System, Pusan National University)
Lee, Kun-Seop (Department of Biology, Pusan National University)
Publication Information
ALGAE / v.23, no.3, 2008 , pp. 241-250 More about this Journal
Abstract
Since seagrasses in the coastal and estuarine ecosystems achieve high levels of production, they require high inorganic carbon and nutrient incorporation. Thus, seagrasses may play a significant role in carbon and nutrient cycling in the coastal and estuarine ecosystems. To examine growth dynamics of Zostera marina L. environmental factors such as underwater irradiance, water temperature, and salinity, and biological parameters such as shoot density, biomass, shoot morphology, and leaf productivity were measured in two bay systems (Jindong Bay and Gamak Bay) on the southern coast of Korea. While underwater irradiance did not show distinct seasonal trend, water temperature at both sites exhibited clear seasonal trend throughout the experimental period. Shoot density increased dramatically during winter due to the increased seedlings through germination of seeds in Jindong Bay and due to the increased lateral shoots in Gamak Bay. Eelgrass biomass increased during winter and decreased during summer. Maximum biomass in Jindong Bay and Gamak Bay was 250.2 and 232.3 g dry weight m–a2, respectively. Carbon incorporation into the eelgrass leaf tissues was estimated from productivity and leaf tissues carbon content. The calculated annual carbon incorporations at the Jindong Bay and Gamak Bay sites were 163 and 295 g C m–`2 y–`1, respectively. This high carbon incorporation into seagrass tissues suggests that seagrass habitats play an important role as a carbon absorber in the coastal and estuarine ecosystems.
Keywords
carbon incorporation; growth dynamics; productivity; seagrass; Zostera marina L.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dennison W.C., Orth R.J., Moore K.A., Stevenson J.C., Carter V., Kollar S., Bergstrom P.W. and Batiuk R.A. 1993. Assessing water quality with submerged aquatic vegetation. BioScience 43:86-94   DOI   ScienceOn
2 Fourqurean J.W. and Zieman J.C. 1991. Photosynthesis, respiration and whole plant carbon budget of the seagrass Thalassia testudinum. Mar. Ecol. Prog. Ser. 69:161-170   DOI
3 Holmquist J.G., Powell G.V.N. and Sogard S.M. 1989. Decapod and stomatopod Assemblages on a system of seagrasscovered mud banks in Florida Bay. Mar. Biol. 100:473-483   DOI
4 Kaldy J.E. and Lee K.-S. 2007. Factor controlling Zostera marina L. growth in the eastern and western Pacific Ocean:Comparisons between Korea and oregon, USA. Aquat. Bot. 87:16-126   DOI   ScienceOn
5 Lee K.-S., Park S.R. and Kim J.-B. 2005. Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the Korean peninsula. Mar. Biol. 147:1091-1108   DOI
6 Blackburn T.H., Nedwell D.B. and Wiebe W.J. 1994. Active Mineral cycling in a Jamaican seagrass sediment. Mar. Ecol. Prog. Ser. 110:233-239   DOI
7 Lee. K.-S., Park S.R. and Kim Y.K. 2007. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses:A review. J. Exp. Mar. Biol. Ecol. 350:144-175   DOI   ScienceOn
8 Kwak S.N. and Klumpp D.W. 2004. Temporal variation in species composition and abundance of fish and decapods of a tropical seagrass bed in Cockle Bay, North Queenland, Australia. Aquat. Bot. 78:119-134   DOI   ScienceOn
9 Larkum A.W.D., Orth R.J. and Duarte C.M. 2006. Seageass:biology, ecology and conservation, Springer, Netherlands, 691pp
10 Dennison W.C. 1987. Effects of light on seagrass photosynthesis, growth and depth distribution. Aquat. Bot. 27:15-26   DOI   ScienceOn
11 Dennison W.C. and Alberte R.S. 1985. Role of daily light period in the depth distribution of Zostera marina (eelgrass). Mar. Ecol. Prog. Ser. 25:51-61   DOI
12 Green E.P. and Short F.T. 2003. World atlas of seagrasses. Prepared by the UNEP World Conservation Monitoring Centre. University of California Press, Berkeley, 298 pp
13 Hemminga M.A. and Duarte C.M. 2000. Seagrass Ecology. Cambridge University Press, Cambridge, 298 pp
14 Hemminga M.A., Harrison P.G. and Vanlent F. 1991. The balance of nutrient losses and gains in seagrass meadows. Mar. Ecol. Prog. Ser. 71:85-96   DOI
15 Pedersen M.F., Paling E.I. and Walker D.I. 1997. Nitrogen uptake and allocation in the seagrass Amphibolis antartica. Aquat. Bot. 6:105-117
16 Van Duin E.H.S., Blom G., Los F.J., Maffione R., Zimmerman R., Cerco C.F., Dortch M. and Best E.P.H. 2001. Modeling underwater light climate in relation to sedimentation resuspension, water quality and autotrophic growth. Hydrobiologia 444:25-42   DOI   ScienceOn
17 Park J.I. and Lee K.-S. 2007. Site-specific success of three transplanting methods and the effect of planting time on the establishment of Zostera marina transplants. Mar. Pollut. Bull. 54:1238-1248   DOI   ScienceOn
18 Parsons T.R., Maita Y. and Lalli C.M. 1984. A manual of chemical and biological methods for seaweater analysis. Pergammon Press, New York, 173 pp
19 Kentula M.E. and McIntire C.D. 1986. The autecology and production dynamics of eelgrass (Zostera marina) beds. Mar. Biol. 66:59-65   DOI
20 Kim J.H., Lee K.H., Park C.W., Seo J.W., Son Y.M., Kim K.H., Youn H.J., Park C.R., Lee S.W. and Oh J.S. 2004. Nonmarket valuation of forest resources in Korea. Korean Institue of Forest Restoration 10:7-15
21 IPCC 2007. Summary for Policymakers. In:Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M. and Miller H.L. (eds), Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
22 Kaldy J.E. 2006. Carbon, nitrogen, phosphorus and heavy metal budget:how large is the eelgrass (Zostera marina L.) sink in a temperate estuary? Mar. Poll. Bul. 52:342-353   DOI   ScienceOn
23 Lee. K.-S and Lee S.Y. 2003. The seagrass of the republic of Korea. In:Green E.P. and Short F.T. (eds), World atlas of seagrasses. Prepared by the UNEP World conservation monitoring centre. University of California Press, Berkeley, pp. 193-198
24 Lee K.-S. and Dunton K.H. 1996. Production and carbon reserve dynamics of the seagrass Thalassia testudinum in Corpus Christi Bay, Texas, USA. Mar. Ecol. Prog. Ser. 143:201-210   DOI
25 Herzka S.Z. and Dunton K.H. 1998. Light and carbon balance in the seagrass Thalassia testudinum:evaluation of current production models. Mar. Biol. 132:711-721   DOI
26 Kim K.Y. and Choi T.S. 2004. Variability in abundance and morphological attributes of Zostera marina L. from the southern coast of korea. Bot. Mar. 47:287-294   DOI   ScienceOn
27 Lee K.-S. and Dunton K.H. 1999. Inorganic nitrogen acquisition in the seagrass Thalassia testudinum:development of a Whole-plant nitrogen budget. Limnol. Oceanogr. 44:1204-1215   DOI
28 Lee K.-S. and Dunton K.H. 2000. Effects of nitrogen enrichment on biomass allocation, growth, and leaf morphology of the seagrass Thalassia testudinum. Mar. Ecol. Prog. Ser. 196:39-48   DOI
29 Zieman J.C. 1974. Methods for the study of growth and production of turtle grass, Thalassia testudinum Konig. Aquaculture 4:139-143   DOI   ScienceOn
30 Phillips R.C., McMillan C. and Bridges K.W. 1983. Phenology of eelgrass, Zostera marina L., along latitudinal gradients on North America. Aquat. Bot. 15:145-156   DOI   ScienceOn
31 Short F.T. and Short C.A. 1984. The seagrass filter:purification of coastal water. In:Kennedy V.S. (ed.), The estuary as a filter. Academic Press. pp. 395-413
32 Stapel J., Arts T.L., van Duynhoven B.H.M., de Groot J.D., van den Hoogen P.H.W. and Hemminga M.A. 1996. Nutrient uptake by leaves and roots of the seagrass Thalassia hemprichii in the spermonde Archipelago, Indonesia. Mar. Ecol. Prog. Ser. 134:195-206   DOI
33 Nakaoka M. and Kouchi N. 2003. Seasonal dynamics of Zostera caulescens:relative importance of flowering shoots to net production. Aquat. Bot. 77:277-293   DOI   ScienceOn
34 Lee Y.G., Hwang J.Y. and Jung K.K. 1995. Surface sediment characteristics and clay minerals in Kamag Bay. J. Korean Earth Science Society 6:477-488
35 McRoy C.P. and McMillan C. 1977. Production and ecology and Physiology of seagrasses. In:McRoy C.P. and Helfferich P. (eds), Seagrass Ecosystems:A Scientific Perspective. Dekker, New York. pp. 53-88
36 Montague C.L. and Ley J.A. 1993. A possible effect of salinity fluctuation on abundance of benthic vegetation and associated fauna in northeastern Florida Bay. Estuaries 16:703-717   DOI   ScienceOn
37 Barber B.J. and Behrens P.J. 1985. Effects of elevated temperature on seasonal in situ leaf productivity of Thalassia testudinum Banks ex Konig and Syrigodium filiforme Kutzing. Auqat. Bot. 22:61-69   DOI   ScienceOn
38 Cebrian J. and Durate C.M. 2001. Detrial stocks and dynamics of the seagrass Posidonia oceanica (L.) Delille in the Spanish Mediterranean. Aquat. Bot. 70:295-309   DOI   ScienceOn
39 Charpy L. and Charpy-Roubaud C.J. 1990. A model of lightprimary production relationship in an atoll lagoon (Tikehau, Tuamotu Archipelago, French Polynesia). UK, J. Mar. Biol. Assoc. 70:357-369   DOI
40 Duarte C.M. and Cebrian J. 1996. The fate of marine autotrophic production. Limnol. Oceanogr. 41:1758-1766   DOI
41 Lee K. -S., Short F.T. and Burdick D.M. 2004. Development of a nutrient pollution indicator using the seagrass, Zostera marina, along nutrient gradients in three New England estuaries. Aquat. Bot. 78:197-216   DOI   ScienceOn
42 Palacios S.L. and Zimmerman R.C. 2007. Response of eelgrass Zostera marina to CO$_2$ enrichment:possible impacts of climate change and potential for remediation of coastal habitats. Mar. Ecol. Prog. Ser. 344:1-13   DOI
43 Short, F.T. 1983. The seagrass, Zostera marina L.:Plant morphology and bed structure in relation to sediment ammonium in Izembek Lagoon, Alaska. Aquat. Bot. 16:149-161   DOI   ScienceOn
44 Short, F.T. 1987. Effects of sediment nutrients on seagrasses:literature review and mesocosm experiment. Aquat. Bot. 27:41-57   DOI   ScienceOn
45 Short F.T. and Neckles H.A. 1999. The effects of global Climate Change on seagrasses. Aquat. Bot. 63:169-196   DOI   ScienceOn